Advancing Experimental Models to Study Intercellular Crosstalk of Cardiac Cells
改进实验模型来研究心肌细胞的细胞间串扰
基本信息
- 批准号:8445599
- 负责人:
- 金额:$ 24.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-16 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAdhesivenessAdultAdvanced DevelopmentAreaArrhythmiaBehaviorCalciumCardiacCardiac MyocytesCardiovascular DiseasesCause of DeathCell CommunicationCell CountCell Culture SystemCell Culture TechniquesCell FractionCellsChemicalsCoculture TechniquesCollagenCommunicationConditioned Culture MediaCouplingDataDevelopmentEngineeringExperimental ModelsExtracellular MatrixFibroblastsFibrosisFunctional disorderGene ExpressionGene Expression ProfilingGoalsHeartHeart DiseasesHeart HypertrophyHeart failureHomoHypertrophyIn SituIn VitroInvestigationKnowledgeLeadLightLinkLocationMechanicsMediatingModelingMolecularMorphologyMyocardiumMyofibroblastNatureNeonatalOutcomePathway interactionsPatternPhenotypePhysiologicalPlayProductionPumpRattusRelative (related person)ResearchRoleShapesSignal TransductionSolidStressSystemTestingTherapeuticTissuesVentricularcardiovascular risk factorcell typedesigngene functionheart cellheart functionhemodynamicsimprovedin vivoinnovationinsightinterdisciplinary approachinterstitiallaser capture microdissectionmortalitynovelparacrinepreventpublic health relevanceresearch studyresponsesudden cardiac deaththree-dimensional modeling
项目摘要
DESCRIPTION (provided by applicant): Cardiac myocytes (CM, <50% of total cell number) and cardiac fibroblasts (CF, 40-60%) are the two major cell types in the myocardium that are highly interspersed, with one or more CF bordering each CM. Intercellular crosstalk is believed to play a central role in determining normal cardiac function and the cardiac remodeling response that ensues in response to many cardiovascular diseases, generally entails CM hypertrophy, CF activation and increased ECM production (fibrosis), and often leads to heart failure and arrhythmias. However, there is a fundamental gap in understanding of the functional importance and mechanisms of CM-CF communication, in part due to a lack of suitable experimental models. Since the intricate interspersion of CF and CM makes investigations of their crosstalk in situ extremely difficult, cell culture systems are required to investigate functional interactions between the two cell types in a direct and controllable manner. The objectives of this application are to advance in vitro co-culture approaches for CM and CF and to investigate the contributions of cell-cell interactions and paracrine effects as well as the functional significance of CF-to-CM crosstalk, both under physiological and pathophysiological conditions. Our long-term goal is to utilize the new experimental models to discover novel pathways that mediate and regulate the interaction between CM and CF in the heart and contribute to the remodeling response. The Specific Aims are (1) To develop micropatterned 2D CM-CF co-cultures with defined homo- and heterotypic interactions and to determine the effect of CF on CM morphology, gene expression and function; (2) To develop 3D CM-CF co-cultures with CF in interspersed or compact configuration and to determine the effect of CF on morphological and integrated functional responses of 3D microtissues. CM and CF size, phenotype, morphology and collagen production as well as CM functional changes (i.e., action potential propagation and calcium transients) will be examined. Molecular mechanisms will be investigated using cell-type-selected gene expression analysis via laser capture microdissection and electrophysiological studies. The proposed study is innovative because our multidisciplinary approach will lead to novel and complementary experimental models with enhanced control of CM-CF interactions (2D model) and with a distribution that mimics the ventricular myocardium (3D model). The models will enable investigations of the communication of cell types that are intricately linked in a tissue context in situ. The proposed research is significant because the models can serve as new platforms for unbiased molecular discovery of novel molecular pathways that mediate and regulate the interaction between CM and CF. the new pathways could serve as targets for the development of new strategies to counteract or prevent cardiac remodeling in response to hemodynamic stress. Furthermore, we anticipate that the models that will be developed and the insights gained in this project will facilitate research on intercellular
crosstalk between other cell types in the cardiac field and beyond.
描述(由申请人提供):心肌细胞(CM,<细胞总数的 50%)和心脏成纤维细胞(CF,40-60%)是心肌中高度分散的两种主要细胞类型,具有一种或多种 CF与每个 CM 接壤。细胞间串扰被认为在确定正常心脏功能和响应许多心血管疾病而发生的心脏重塑反应中发挥核心作用,通常导致 CM 肥大、CF 激活和 ECM 产生增加(纤维化),并经常导致心力衰竭和心脏重塑。心律失常。然而,对 CM-CF 通信的功能重要性和机制的理解存在根本差距,部分原因是缺乏合适的实验模型。由于 CF 和 CM 错综复杂的分散使得原位研究它们的串扰变得极其困难,因此细胞培养系统需要以直接且可控的方式研究两种细胞类型之间的功能相互作用。本申请的目的是推进 CM 和 CF 的体外共培养方法,并研究细胞间相互作用和旁分泌效应的贡献,以及 CF 与 CM 串扰在生理和病理生理条件下的功能意义。状况。我们的长期目标是利用新的实验模型来发现介导和调节心脏中 CM 和 CF 之间相互作用并有助于重塑反应的新途径。具体目标是 (1) 开发具有明确同型和异型相互作用的微图案化 2D CM-CF 共培养物,并确定 CF 对 CM 形态、基因表达和功能的影响; (2) 开发散布或紧凑配置的 3D CM-CF 与 CF 共培养物,并确定 CF 对 3D 微组织形态和综合功能反应的影响。将检查 CM 和 CF 的大小、表型、形态和胶原蛋白生成以及 CM 功能变化(即动作电位传播和钙瞬变)。将通过激光捕获显微切割和电生理学研究,使用细胞类型选择的基因表达分析来研究分子机制。拟议的研究具有创新性,因为我们的多学科方法将产生新颖且互补的实验模型,增强对 CM-CF 相互作用的控制(2D 模型)并具有模拟心室心肌的分布(3D 模型)。这些模型将能够研究在原位组织环境中错综复杂地联系在一起的细胞类型的通讯。所提出的研究意义重大,因为这些模型可以作为新平台,用于公正地分子发现介导和调节 CM 和 CF 之间相互作用的新分子途径。新的途径可以作为制定新策略的目标,以抵消或预防因血流动力学应激而发生的心脏重塑。此外,我们预计该项目中将开发的模型和获得的见解将促进细胞间的研究
心脏领域内外其他细胞类型之间的串扰。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ulrike Mende其他文献
Ulrike Mende的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ulrike Mende', 18)}}的其他基金
Regulation of Gq Signaling in Cardiac Fibroblasts and its Role in Cardiac Remodel
心脏成纤维细胞 Gq 信号传导的调节及其在心脏重塑中的作用
- 批准号:
8725729 - 财政年份:2013
- 资助金额:
$ 24.21万 - 项目类别:
Regulation of Gq Signaling in Cardiac Fibroblasts and its Role in Cardiac Remodel
心脏成纤维细胞 Gq 信号传导的调节及其在心脏重塑中的作用
- 批准号:
9064836 - 财政年份:2013
- 资助金额:
$ 24.21万 - 项目类别:
Regulation of Gq Signaling in Cardiac Fibroblasts and its Role in Cardiac Remodel
心脏成纤维细胞 Gq 信号传导的调节及其在心脏重塑中的作用
- 批准号:
8503045 - 财政年份:2013
- 资助金额:
$ 24.21万 - 项目类别:
Advancing Experimental Models to Study Intercellular Crosstalk of Cardiac Cells
改进实验模型来研究心肌细胞的细胞间串扰
- 批准号:
8605913 - 财政年份:2013
- 资助金额:
$ 24.21万 - 项目类别:
Regulation of Gq Signaling in Cardiac Fibroblasts and its Role in Cardiac Remodel
心脏成纤维细胞 Gq 信号传导的调节及其在心脏重塑中的作用
- 批准号:
8847375 - 财政年份:2013
- 资助金额:
$ 24.21万 - 项目类别:
RGS Regulation of Cardiac Signaling and Hypertrophy
RGS 对心脏信号传导和肥厚的调节
- 批准号:
7619985 - 财政年份:2006
- 资助金额:
$ 24.21万 - 项目类别:
RGS Regulation of Cardiac Signaling and Hypertrophy
RGS 对心脏信号传导和肥厚的调节
- 批准号:
7344686 - 财政年份:2006
- 资助金额:
$ 24.21万 - 项目类别:
RGS Regulation of Cardiac Signaling and Hypertrophy
RGS 对心脏信号传导和肥厚的调节
- 批准号:
7094798 - 财政年份:2006
- 资助金额:
$ 24.21万 - 项目类别:
RGS Regulation of Cardiac Signaling and Hypertrophy
RGS 对心脏信号传导和肥厚的调节
- 批准号:
7225218 - 财政年份:2006
- 资助金额:
$ 24.21万 - 项目类别:
RGS Regulation of Cardiac Signaling and Hypertrophy
RGS 对心脏信号传导和肥厚的调节
- 批准号:
7808915 - 财政年份:2006
- 资助金额:
$ 24.21万 - 项目类别:
相似国自然基金
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
电活性骨粘合剂通过调控神经源性外泌体释放促进骨质疏松粉碎性骨折快速愈合的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于溶剂响应性缠结高分子的动态水环境适用粘合剂
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动力锂电池正极涂布快速制造中粘合剂分布均匀性调控及能耗优化研究
- 批准号:51905361
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
预应力用缓粘结粘合剂固化机理及流变性研究
- 批准号:51578557
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Inflammatory mechanisms responsible for the development of multiple organ dysfunction in pediatric patients following allogeneic blood and marrow transplantation (BMT).
炎症机制导致儿童患者在同种异体血液和骨髓移植(BMT)后出现多器官功能障碍。
- 批准号:
10554332 - 财政年份:2020
- 资助金额:
$ 24.21万 - 项目类别:
Antimicrobial and Remineralizing Composites for Class V Restorations
用于 V 级修复的抗菌和再矿化复合材料
- 批准号:
10291448 - 财政年份:2020
- 资助金额:
$ 24.21万 - 项目类别:
Mechanisms of hemodynamic-force-regulated vascular smooth muscle cell recruitment and attachment
血流动力学力调节血管平滑肌细胞募集和附着的机制
- 批准号:
10046374 - 财政年份:2020
- 资助金额:
$ 24.21万 - 项目类别:
Inflammatory mechanisms responsible for the development of multiple organ dysfunction in pediatric patients following allogeneic blood and marrow transplantation (BMT).
炎症机制导致儿童患者在同种异体血液和骨髓移植(BMT)后出现多器官功能障碍。
- 批准号:
10333218 - 财政年份:2020
- 资助金额:
$ 24.21万 - 项目类别:
Mechanisms of hemodynamic-force-regulated vascular smooth muscle cell recruitment and attachment
血流动力学力调节血管平滑肌细胞募集和附着的机制
- 批准号:
10247363 - 财政年份:2020
- 资助金额:
$ 24.21万 - 项目类别: