Exploiting Selective Recruitment to Prolong Standing after SCI

利用选择性招募来延长 SCI 后的资格

基本信息

项目摘要

DESCRIPTION (provided by applicant): The goal of this project is to integrate several demonstrated technologies for restoring lower limb function after paralysis from spinal cord injury (SCI), and examine novel stimulation schemes designed to minimize fatigue of the knee extensor musculature during standing. All existing stimulation systems for standing after SCI rely on continuous activation of the knee extensors, which results in rapid fatigue that limits their functionality and clinical utility. The primary objective of this translational study is to improve the performance of neuroprostheses for standing by developing and implementing advanced stimulation paradigms that exploit the selectivity of multi- contact peripheral nerve electrodes to prolong standing duration. Strategie for exploiting the selective activation of multiple synergistic muscle fiber populations include alternating between independent groups to reduce stimulus duty cycle, interleaving stimulus pulses to reduce local stimulus frequency, and a previously unexplored paradigm in which the oscillations of sinusoidal forces generated by each population produce a constant net output that exceeds any individual contribution. There has yet to be a successful critical evaluation of any of these methods chronically in humans, which still require rigorous bench testing. Stable and selective peripheral nerve interfaces (multi-contact spiral cuff electrodes) have recently become available for chronic human implantation and will enable the clinical assessment of advanced stimulation paradigms in individuals with SCI. We will implement each paradigm in recipients of implanted standing neuroprostheses and determine their relative benefits in terms of knee extension moment, endurance, robustness and elapsed standing duration. The numerous parameters that need to be adjusted for each muscle fiber population are currently selected ad hoc in a time consuming trial-and-error process. We will perform a series of chronic animal studies to develop and test automated methods for tuning each stimulation paradigm and selecting optimal parameters to maximize performance and generalize them to other neural interface technologies. The resulting tuning and optimization methods resulting from these studies will be verified clinically with users of a variety of implanted neuroprostheses, and will ultimately be suitable for transfer to other clinical applications. PUBLIC HEALTH RELEVANCE: Neuroprostheses for standing after spinal cord injury (SCI) are plagued by rapid fatigue from continuous activation of the knee extensors which limits their functionality and clinical usefulness. This project will determine the feasibility and performance of novel stimulation paradigms that exploit the ability of new multi- contact peripheral nerve electrodes to selectively activate individual portions of different muscles in order to prolong standing duration. Stimulus waveforms will initially be constructed off-line and then implemented clinically with recipients of implanted standing systems. Methods for automatically tuning stimulation for optimal performance will be determined in a parallel set of animal studies generalizable to other applications and interface technologies. The optimized stimulus waveforms will then be deployed clinically and compared to the hand-crafted controllers. The outcome will define a new approach for enhancing the intrinsic function of individuals with SCI, and extending the clinical utility of neuroprostheses in a device independent manner.
描述(由申请人提供): 该项目的目标是整合几种已证实的技术,用于在脊髓损伤(SCI)瘫痪后恢复下肢功能,并研究旨在最大限度地减少站立期间膝伸肌组织疲劳的新颖刺激方案。所有现有的 SCI 后站立刺激系统都依赖于膝关节伸肌的持续激活,这会导致快速疲劳,从而限制了其功能和临床实用性。这 这项转化研究的主要目标是通过开发和实施先进的刺激范例来提高站立神经假体的性能,这些范例利用多接触周围神经电极的选择性来延长站立时间。 利用多个协同肌纤维群的选择性激活的策略包括在独立组之间交替以减少刺激占空比、交错刺激脉冲以减少局部刺激频率以及先前未探索的范例,其中每个群产生的正弦力的振荡产生超过任何个人贡献的恒定净产出。 目前尚未对任何这些方法在人类中进行长期的成功批判性评估,这仍然需要严格的台架测试。稳定且选择性的周围神经接口(多接触螺旋袖带电极)最近已可用于慢性人体植入,并将能够对 SCI 个体的高级刺激范例进行临床评估。我们将在植入站立神经假体的接受者中实施每种范例,并确定它们在膝关节伸展力矩、耐力、稳健性和站立持续时间方面的相对益处。目前,需要针对每个肌纤维群体调整的众多参数是在耗时的试错过程中临时选择的。 我们将进行一系列慢性动物研究,以开发和测试自动化方法,用于调整每个刺激范例并选择最佳参数以最大限度地提高性能,并将其推广到其他神经接口技术。 这些研究产生的调整和优化方法将由各种植入神经假体的用户进行临床验证,并最终适合转移到其他临床应用。 公共卫生相关性: 用于脊髓损伤(SCI)后站立的神经假体受到膝伸肌持续激活导致的快速疲劳的困扰,这限制了它们的功能和临床用途。该项目将确定新型刺激范例的可行性和性能,这些范例利用新型多接触周围神经电极的能力来选择性地 激活不同肌肉的各个部分,以延长站立时间。刺激波形最初将离线构建,然后在接受者的临床上实施 植入站立系统。自动调整刺激以获得最佳性能的方法将在一组平行的动物研究中确定,这些研究可推广到其他应用和接口技术。然后,优化的刺激波形将在临床上部署,并与手工制作的控制器进行比较。该成果将定义一种新方法,用于增强 SCI 患者的内在功能,并以独立于设备的方式扩展神经假体的临床实用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RONALD J TRIOLO其他文献

RONALD J TRIOLO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RONALD J TRIOLO', 18)}}的其他基金

Senior Research Career Scientist
高级研究职业科学家
  • 批准号:
    10315818
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Senior Research Career Scientist
高级研究职业科学家
  • 批准号:
    10507773
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Functional and Neuroprotective Effects of Restoring Lower Limb Sensation after Diabetic Peripheral Neuropathy
糖尿病周围神经病变后恢复下肢感觉的功能和神经保护作用
  • 批准号:
    10599863
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Functional and Neuroprotective Effects of Restoring Lower Limb Sensation after Diabetic Peripheral Neuropathy
糖尿病周围神经病变后恢复下肢感觉的功能和神经保护作用
  • 批准号:
    10184521
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Functional and Neuroprotective Effects of Restoring Lower Limb Sensation after Diabetic Peripheral Neuropathy
糖尿病周围神经病变后恢复下肢感觉的功能和神经保护作用
  • 批准号:
    10390351
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Senior Research Career Scientist
高级研究职业科学家
  • 批准号:
    10672971
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Stimulation combined with externally powered motorized orthoses for stroke
刺激结合外部动力电动矫形器治疗中风
  • 批准号:
    10329995
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Stimulation combined with externally powered motorized orthoses for stroke
刺激结合外部动力电动矫形器治疗中风
  • 批准号:
    10543078
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Hybrid neuroprosthesis with power assist for walking in SCI
用于 SCI 行走的混合神经假体
  • 批准号:
    9768248
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Exploiting Selective Recruitment to Prolong Standing after SCI
利用选择性招募来延长 SCI 后的资格
  • 批准号:
    9525331
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

临床相关的挫伤、剪切伤和牵拉伤胸脊髓损伤大鼠模型的建立及分析研究
  • 批准号:
    81771347
  • 批准年份:
    2017
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
剪切应力对椎间盘的影响及其机制研究
  • 批准号:
    81371988
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
中医脊柱推拿“椎骨错缝”动物模型的建立及其生物力学特性和神经传导功能变化研究
  • 批准号:
    81072891
  • 批准年份:
    2010
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
不对称力在大鼠脊柱侧凸模型中对椎体和椎间盘血管的影响
  • 批准号:
    81000817
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
不同应力刺激对犬坏死股骨头自身修复影响的实验研究
  • 批准号:
    30970699
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
  • 批准号:
    10818804
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Liquid cartilage for arthroscopy
关节镜用液体软骨
  • 批准号:
    10649312
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The mechanotranscriptome of the optic nerve head following acute experimental ocular hypertension in living human eyes
活体人眼急性实验性高眼压后视神经乳头的机械转录组
  • 批准号:
    10639434
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Production of 3D Bioprinted Autologous Vaginal Tissue Constructs for Reconstructive Applications
生产用于重建应用的 3D 生物打印自体阴道组织结构
  • 批准号:
    10672642
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Tissue-engineered regeneration of the minipig TMJ condyle
小型猪颞下颌关节髁的组织工程再生
  • 批准号:
    10679842
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了