An Integrated System for Single Molecule Electronic Sequencing by Synthesis
单分子电子合成测序集成系统
基本信息
- 批准号:8572847
- 负责人:
- 金额:$ 175万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAreaBase SequenceBindingChargeComplexDNADNA SequenceDNA Sequence DeterminationDNA-Directed DNA PolymeraseDetectionDevelopmentDiagnosticDiffuseElectrical EngineeringElectrodesElectronicsEnsureEthylene GlycolsFeedbackFoundationsGenomeGenomicsGoalsHeadHemolysinIndiumLeftLengthLinkMeasuresMedicalMedicineMethodologyMethodsModificationMutateNucleic AcidsNucleotidesPolyethylene GlycolsPolymerasePolymersPolynucleotidesProductionPropertyProteinsReactionReadingReportingScientistSequence DeterminationSideSignal TransductionSpeedSystemTechniquesTestingTextTimeUrsidae FamilyVestibuleWorkbasechemical propertyconstrictioncostdensitydesignethylene glycolgenome sequencinginformation processinginorganic phosphatemillisecondmutantnanonanofabricationnanoporenucleotide analogphosphodiesterpolypeptidepreventprototyperesearch and developmentresearch studysensorsingle moleculetripolyphosphatevoltage
项目摘要
There is a great need to reduce the cost of DNA sequencing to achieve the goal of the $1000
genome. We recently developed a new nanopore-based sequencing by synthesis (Nano-SBS)
approach. In this project, we will pursue the development of the Nano-SBS approach into a high
throughput real-time single-molecule sequencing platform. In the Nano-SBS method, a polymer
tag of distinct size and charge is attached to the terminal phosphate of each of the four
nucleotides. When the complementary nucleotide analog enters a template-primer-polymerase
complex that is attached to the nanopore during the polymerase reaction, the tag specific for
that nucleotide is captured in the voltage gradient within the nanopore and results in a current
blockade unique to each tag for sequence determination. The polymerase is covalently attached
to the nanopore by a short linker so the polymeric tag will have sufficient time to enter the
vestibule and constriction of the nanopore prior to its release ensuring that its current blockade
signal is recorded by the nanopore. The extended DNA strand bears only natural nucleotides,
enabling long reads. We have carried out the key proof-of-principle experiments to demonstrate
the feasibility of this approach. Here our strong team of nucleic acid chemists, genomic
scientists, electrical engineers, and nanofabrication experts will further develop the Nano-SBS
as a high throughput genomic sequencing system. We will develop robust methodology to
attach polymerase to the .-hemolysin (AHL) nanopore and synthesize nano-tags with unique
chemical properties resulting in AHL current blockades distinct from each other and nucleotide
precursors. We will test these elements in single pores as well as in new nanopore array chips
with separate sensors and circuits for each pore. We will produce mutant AHL and polymerase
constructs and link them to each other, selecting for the combination that assures accurate DNA
extension reactions, and rapid capture and detection of tags in nanopores. The nanopore chips
will be enhanced and expanded from the current 260 nanopores to over 125,000 using
advanced nanofabrication techniques. We will conduct real-time single molecule Nano-SBS on
DNA templates with known sequences to test and optimize the overall system. These research
and development efforts will lay the foundation for the production of a commercial single
molecule electronic DNA sequencing platform, which will enable routine use of sequencing for
medical diagnostics and personalized medicine.
1
为了实现 1000 美元的目标,迫切需要降低 DNA 测序的成本
基因组。我们最近开发了一种新的基于纳米孔的边合成边测序(Nano-SBS)
方法。在这个项目中,我们将致力于将纳米 SBS 方法发展为高
高通量实时单分子测序平台。在纳米 SBS 方法中,聚合物
不同大小和电荷的标签附着在四个的末端磷酸盐上
核苷酸。当互补核苷酸类似物进入模板引物聚合酶时
在聚合酶反应过程中附着在纳米孔上的复合物,该标签特异于
核苷酸被纳米孔内的电压梯度捕获并产生电流
每个标签独有的封锁用于序列确定。聚合酶是共价连接的
通过短连接体连接到纳米孔,因此聚合物标签将有足够的时间进入
纳米孔释放前的前庭和收缩确保其当前的封锁
信号由纳米孔记录。延伸的 DNA 链仅含有天然核苷酸,
启用长读取。我们进行了关键的原理验证实验来证明
该方法的可行性。这里是我们强大的核酸化学家、基因组团队
科学家、电气工程师和纳米制造专家将进一步开发纳米 SBS
作为高通量基因组测序系统。我们将开发稳健的方法
将聚合酶附着到.-溶血素 (AHL) 纳米孔上并合成具有独特的纳米标签
导致 AHL 当前阻断彼此不同且核苷酸不同的化学特性
前体。我们将在单孔以及新的纳米孔阵列芯片中测试这些元素
每个孔都有单独的传感器和电路。我们将生产突变型AHL和聚合酶
构建并将它们相互连接,选择确保准确 DNA 的组合
延伸反应以及纳米孔中标签的快速捕获和检测。纳米孔芯片
将从目前的 260 个纳米孔增强并扩展到超过 125,000 个
先进的纳米制造技术。我们将进行实时单分子纳米SBS
具有已知序列的 DNA 模板,用于测试和优化整个系统。这些研究
开发工作将为商业单曲的制作奠定基础
分子电子DNA测序平台,这将使测序的常规使用成为可能
医疗诊断和个性化医疗。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(6)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEORGE M CHURCH其他文献
GEORGE M CHURCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEORGE M CHURCH', 18)}}的其他基金
Single-Molecule Electronic Nucleic Acid Sequencing-by-Synthesis Using Novel Tagged Nucleotides and Nanopore Constructs
使用新型标记核苷酸和纳米孔结构进行单分子电子核酸合成测序
- 批准号:
10170406 - 财政年份:2020
- 资助金额:
$ 175万 - 项目类别:
Single-Molecule Electronic Nucleic Acid Sequencing-by-Synthesis Using Novel Tagged Nucleotides and Nanopore Constructs
使用新型标记核苷酸和纳米孔结构进行单分子电子核酸合成测序
- 批准号:
10381535 - 财政年份:2020
- 资助金额:
$ 175万 - 项目类别:
Single-Molecule Electronic Nucleic Acid Sequencing-by-Synthesis Using Novel Tagged Nucleotides and Nanopore Constructs
使用新型标记核苷酸和纳米孔结构进行单分子电子核酸合成测序
- 批准号:
10021992 - 财政年份:2019
- 资助金额:
$ 175万 - 项目类别:
Exploring a Novel Paradigm of Schizophrenia and Bipolar Disorder
探索精神分裂症和双相情感障碍的新范式
- 批准号:
9357685 - 财政年份:2016
- 资助金额:
$ 175万 - 项目类别:
Exploring a Novel Paradigm of Schizophrenia and Bipolar Disorder
探索精神分裂症和双相情感障碍的新范式
- 批准号:
9981018 - 财政年份:2016
- 资助金额:
$ 175万 - 项目类别:
Genome Engineering an IPSC Model of Alzheimer's Disease
阿尔茨海默病的基因组工程 IPSC 模型
- 批准号:
8756257 - 财政年份:2014
- 资助金额:
$ 175万 - 项目类别:
An Integrated System for Single Molecule Electronic Sequencing by Synthesis
单分子电子合成测序集成系统
- 批准号:
8919436 - 财政年份:2013
- 资助金额:
$ 175万 - 项目类别:
An Integrated System for Single Molecule Electronic Sequencing by Synthesis
单分子电子合成测序集成系统
- 批准号:
8728991 - 财政年份:2013
- 资助金额:
$ 175万 - 项目类别:
相似国自然基金
蛋白法尼基化修饰对水稻边界区域和腋生分生组织发育的调控机制
- 批准号:32300312
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于能动性-结构组态效应的区域创业活动空间依赖与突破
- 批准号:42371173
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
包含低序列复杂度区域蛋白质相分离的跨尺度构象关联性研究
- 批准号:22303060
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于原位检-监测协同的大面积表层混凝土传输性能劣化区域快速识别方法研究
- 批准号:52378218
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向复杂应急区域的移动基站信号覆盖问题研究
- 批准号:72301209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Small molecule inhibitors and degraders of picornavirus 2A proteases as direct-acting antivirals
小核糖核酸病毒 2A 蛋白酶的小分子抑制剂和降解剂作为直接抗病毒药物
- 批准号:
10514272 - 财政年份:2022
- 资助金额:
$ 175万 - 项目类别:
Neoantigen-specific T cell responses for Fibrolamellar Hepatocellular Carcinoma
纤维板层肝细胞癌的新抗原特异性 T 细胞反应
- 批准号:
10467512 - 财政年份:2022
- 资助金额:
$ 175万 - 项目类别:
LIM domain kinases: regulation and substrate recognition
LIM 结构域激酶:调节和底物识别
- 批准号:
10443356 - 财政年份:2022
- 资助金额:
$ 175万 - 项目类别:
A Metabolic Engineering Strategy to Map Sialyltransferase Glycosites
绘制唾液酸转移酶糖位图的代谢工程策略
- 批准号:
10468652 - 财政年份:2021
- 资助金额:
$ 175万 - 项目类别:
A Metabolic Engineering Strategy to Map Sialyltransferase Glycosites
绘制唾液酸转移酶糖位图的代谢工程策略
- 批准号:
10313364 - 财政年份:2021
- 资助金额:
$ 175万 - 项目类别: