Single-Molecule Electronic Nucleic Acid Sequencing-by-Synthesis Using Novel Tagged Nucleotides and Nanopore Constructs
使用新型标记核苷酸和纳米孔结构进行单分子电子核酸合成测序
基本信息
- 批准号:10170406
- 负责人:
- 金额:$ 51.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-22 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAreaBacterial GenomeBar CodesBindingBiological AssayBiologyCircular DNAComplexDNADNA LibraryDNA sequencingDNA-Directed DNA PolymeraseDataDetectionDevelopmentElectrodesEnzyme KineticsEnzymesEvaluationEventFundingGenomic DNAHemolysinIndividualIsomerismKineticsLengthLibrariesLipid BilayersMeasurementMeasuresMedicineMethodsModificationMorphologic artifactsNucleic acid sequencingNucleotidesPatternPerformancePolymerasePolymersPolyphosphatesPositioning AttributePreventive MedicinePropertyProtocols documentationPublic HealthReactionReaction TimeReportingResolutionSamplingSequence DeletionSequence DeterminationSeriesSignal TransductionSpeedStutteringSystemTechnologyTestingTimeUnited States National Institutes of HealthViralViral GenomeWorkbasecarbenecostdesigndetection methodgel electrophoresisgenome sequencingimprovedinnovationinorganic phosphateinsertion/deletion mutationinstrumentationnanoporenext generationnovelnucleotide analogprocess optimizationresearch and developmentscreeningsensorsequencing platformsingle moleculesynthetic constructthiophosphate
项目摘要
Single-Molecule Electronic Nucleic Acid Sequencing-by-Synthesis Using Tagged Nucleotides and Nanopore Constructs
With past NIH funding, we developed a single molecule nanopore-based sequencing by synthesis (SBS) strategy
(Nanopore SBS) that accurately distinguishes the four DNA bases by electronically detecting 4 different polymer tags
attached to the 5’-phosphate-modified nucleotides during their incorporation into a growing DNA strand catalyzed by
DNA polymerase. We designed and synthesized several polymer-tagged nucleotides using tags that produce different
electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA
polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and
inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming
complementary-tagged nucleotide forms a tight ternary complex with the primed template and polymerase, the
polymer tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides
tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable
and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time
single-molecule electronic DNA sequencing data with single-base resolution were obtained.
While the Nanopore-SBS approach already produces good quality sequences, further optimization and development
are needed to increase sequencing accuracy, while maintaining the ability of our nanopore-based single-molecule
electronic system to produce long reads in real time. In this proposal, we will design and synthesize novel tagged
nucleotides and construct nanopore-polymerase conjugates to control the sequencing reaction speed and increase
single-molecule sequencing accuracy substantially, achieving desired polymerase catalytic rates and more efficient and
consistent tag capture by the pores. We will use high ratios of unincorporable-to-incorporable tagged nucleotides to
perform Nanopore-SBS. This will provide ample time to register currents due to the 4 unique tags on the unincorporable
A, C, G and T nucleotides which display template-dependent binding to the polymerase ternary complex but are not
incorporated into the growing DNA strand, followed by a new current level due to a 5th tag on the incorporable
nucleotide which marks the transition to the extension step. This effectively eliminates insertion and deletion sequence
artifacts, increases accuracy, and will be especially advantageous in DNA homopolymer repeat regions. This approach
allows detection of a single nucleotide binding event multiple times (stutters) before the actual incorporation event,
overcoming the inherent limitation of single molecule detection methods that only allow one chance for measurement.
After optimizing the system with synthetic DNA templates, circular DNA libraries will be generated from viral and
bacterial genomes to test this sequencing approach. With the improved tagged nucleotides, better regulated reaction
kinetics, and newly designed polymerase-pore complexes, we will test the accuracy of our system on the nanopore
arrays by sequencing these libraries at high coverage and comparing the results with other sequencing systems.
使用标记核苷酸和纳米孔结构的单分子电子核酸合成测序
利用 NIH 过去的资助,我们开发了一种基于单分子纳米孔的边合成边测序 (SBS) 策略
(Nanopore SBS)通过电子检测 4 种不同的聚合物标签来准确地区分四种 DNA 碱基
在掺入 5'-磷酸修饰的核苷酸的过程中,它们被附着到由
DNA 聚合酶使用产生不同的标签设计并合成了几种聚合物标记的核苷酸。
电流封锁水平并验证它们是 DNA 聚合酶的活性底物一种高度持续性的 DNA。
聚合酶与纳米孔缀合,缀合物与引物/模板 DNA 复合,
当传入时,将其插入纳米孔芯片的单独可寻址电极上的脂质双层中。
互补标记的核苷酸与引物模板和聚合酶形成紧密的三元复合物,
聚合物标签进入孔内,测量当前的封锁水平 四种核苷酸显示的水平。
在这种三元复合物中,用捕获在纳米孔中的四种不同聚合物进行标记,可以清楚地区分
和序列特异性,能够在聚合酶反应过程中连续测定序列,从而实现实时测定。
获得了单碱基分辨率的单分子电子DNA测序数据。
虽然 Nanopore-SBS 方法已经产生了高质量的序列,但仍需进一步优化和开发
需要提高测序准确性,同时保持我们基于纳米孔的单分子的能力
实时产生长读的电子系统在这个提案中,我们将设计和合成新颖的标签。
核苷酸并构建纳米孔聚合酶缀合物来控制测序反应速度并提高
单分子测序准确率大幅提高,实现理想的聚合酶催化速率,更加高效
我们将使用高比例的不可结合与不可结合的标记核苷酸来捕获一致的标签。
由于不可合并的 4 个独特标签,这将提供充足的时间来注册电流。
A、C、G 和 T 核苷酸显示出与聚合酶三元复合物的模板依赖性结合,但不
整合到不断增长的 DNA 链中,然后由于不可整合的第 5 个标签而出现新的当前水平
标记过渡到延伸步骤的核苷酸,这有效地消除了插入和缺失序列。
这种方法在 DNA 均聚物重复区域中特别有利。
允许在实际掺入事件之前多次(断断续续)检测单个核苷酸结合事件,
克服了单分子检测方法仅允许一次测量机会的固有局限性。
使用合成 DNA 模板优化系统后,将从病毒和病毒中生成环状 DNA 文库。
细菌基因组来测试这种测序方法,通过改进的标记核苷酸,更好地调节反应。
动力学和新设计的聚合酶孔复合物,我们将测试我们的系统在纳米孔上的准确性
通过以高覆盖度对这些文库进行测序并将结果与其他测序系统进行比较来对阵列进行分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEORGE M CHURCH其他文献
GEORGE M CHURCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEORGE M CHURCH', 18)}}的其他基金
Single-Molecule Electronic Nucleic Acid Sequencing-by-Synthesis Using Novel Tagged Nucleotides and Nanopore Constructs
使用新型标记核苷酸和纳米孔结构进行单分子电子核酸合成测序
- 批准号:
10381535 - 财政年份:2020
- 资助金额:
$ 51.89万 - 项目类别:
Single-Molecule Electronic Nucleic Acid Sequencing-by-Synthesis Using Novel Tagged Nucleotides and Nanopore Constructs
使用新型标记核苷酸和纳米孔结构进行单分子电子核酸合成测序
- 批准号:
10021992 - 财政年份:2019
- 资助金额:
$ 51.89万 - 项目类别:
Exploring a Novel Paradigm of Schizophrenia and Bipolar Disorder
探索精神分裂症和双相情感障碍的新范式
- 批准号:
9357685 - 财政年份:2016
- 资助金额:
$ 51.89万 - 项目类别:
Exploring a Novel Paradigm of Schizophrenia and Bipolar Disorder
探索精神分裂症和双相情感障碍的新范式
- 批准号:
9981018 - 财政年份:2016
- 资助金额:
$ 51.89万 - 项目类别:
Genome Engineering an IPSC Model of Alzheimer's Disease
阿尔茨海默病的基因组工程 IPSC 模型
- 批准号:
8756257 - 财政年份:2014
- 资助金额:
$ 51.89万 - 项目类别:
An Integrated System for Single Molecule Electronic Sequencing by Synthesis
单分子电子合成测序集成系统
- 批准号:
8572847 - 财政年份:2013
- 资助金额:
$ 51.89万 - 项目类别:
An Integrated System for Single Molecule Electronic Sequencing by Synthesis
单分子电子合成测序集成系统
- 批准号:
8919436 - 财政年份:2013
- 资助金额:
$ 51.89万 - 项目类别:
An Integrated System for Single Molecule Electronic Sequencing by Synthesis
单分子电子合成测序集成系统
- 批准号:
8728991 - 财政年份:2013
- 资助金额:
$ 51.89万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 51.89万 - 项目类别:
Domain- and protein-selective BET mechanisms in cocaine-seeking behaviors
可卡因寻求行为中的结构域和蛋白质选择性 BET 机制
- 批准号:
10714343 - 财政年份:2023
- 资助金额:
$ 51.89万 - 项目类别:
B Cell Biology in the Context of Infectious Diseases, Autoimmunity and B Cell Cancers
传染病、自身免疫和 B 细胞癌症背景下的 B 细胞生物学
- 批准号:
10683443 - 财政年份:2023
- 资助金额:
$ 51.89万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 51.89万 - 项目类别:
Multifunctional Roles of AgI/II Family Proteins
AgI/II 家族蛋白的多功能作用
- 批准号:
10750344 - 财政年份:2023
- 资助金额:
$ 51.89万 - 项目类别: