A Translational Bioinformatics Approach in the Drug Interaction Research
药物相互作用研究中的转化生物信息学方法
基本信息
- 批准号:8913218
- 负责人:
- 金额:$ 32.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAntimalarialsAntipsychotic AgentsApplications GrantsBasic ScienceBioinformaticsBiologicalBiological AssayCYP3A4 geneCellsChloroquineClinicalClinical ResearchCollaborationsComputerized Medical RecordConfounding Factors (Epidemiology)DataData AnalysesData SetDatabasesDetectionDisciplineDrug ExposureDrug InteractionsDrug KineticsEmergency department visitEpidemiologyGenomicsGoalsHealthHealthcare SystemsHospitalizationIn VitroIncidenceIndividualLaboratory StudyMedical RecordsMetabolismMethodologyMethodsMiningModelingMolecularMuscle WeaknessMyopathyOutcomePathway interactionsPatientsPerformancePharmaceutical PreparationsPharmacologyPolypharmacyProteinsPublic HealthReactionRecombinantsReportingResearchResearch DesignRiskSchemeScientistScoring MethodSumSystemTestingTranslational ResearchTranslationsUnited StatesWorkbasecase controldata miningdesigndrug efficacydrug metabolismdrug testingepidemiology studyinsightnovelpatient populationpopulation basedquetiapineresearch studyscreeningsimulationstatisticssurveillance studytheoriestranslational approachunpublished worksuptake
项目摘要
DESCRIPTION (provided by applicant): Drug-drug interactions (DDIs) represent an increasing threat to public health, causing an estimated 195,000 annual hospitalizations and 74,000 emergency room visits. Current DDI research investigates different aspects of drug interactions, both computationally and experimentally. Although these approaches are complementary, they are usually conducted independently and without coordination. In vitro pharmacology experiments use intact cells, microsomal protein fractions, or recombinant systems to investigate drug interaction mechanisms. Pharmaco-epidemiology (in populo) uses a population-based approach and large electronic medical record (EMR) databases to investigate the contribution of a DDI to drug efficacy and adverse drug reactions (ADRs). In this grant proposal, novel bioinformatics data mining approaches will be developed to mine DDIs from EMR, and they will be further validated in vitro. The following are specific aims. In Aim 1, a nove dynamic nested case-control design is proposed to detect of either single drug or DDI effects on the ADR. A new empirical Bayes method is developed to test the drug and DDI-induced ADRs, and it will estimate false discovery rates. In Aim 2, a novel generalized propensity score method is proposed to analyze high dimensional medication data. This method possesses more power in identifying ADR effects from highly correlated drugs, than the conventional propensity score method. Aim 3, using the univariate and multivariate data mining methods developed in aims 1 and 2, we will detect novel drugs and DDIs that increase the risk of one well-defined ADR, myopathy, using the EMR database and high-throughput enzymatic screening assays. In our preliminary work, using our proposed methodology and a 2.2 million record EMR database, six myopathy risk DDIs were identified (p < 5�10-6), including a newly discovered interaction between quetiapine and chloroquine. If taken together, they increase myopathy risk 2.17-fold higher than their added individual risks due to quetiapine inhibition of chloroquine metabolism by the CYP3A4 pathway and blockage of the OATP1B1/1B3 transmembrane transporter. Thus, the successful execution of this work will demonstrate a complete translational scope, starting with EMR-based DDI discovery, and ending with the elucidation of molecular DDI mechanisms through pharmacological experiments. Together, these preliminary data demonstrate that our translational approach is a highly feasible and extremely powerful method for clinical DDI research, likely to yield valuable insight into this emerging public health peril.
描述(由申请人提供):药物相互作用 (DDI) 对公众健康构成越来越大的威胁,估计每年导致 195,000 人住院和 74,000 人次急诊室就诊,目前的 DDI 研究通过计算和实验研究了药物相互作用的不同方面。方法是互补的,它们通常独立进行且没有协调。体外药理学实验使用完整细胞、微粒体蛋白片段或重组系统来研究药物相互作用。药物流行病学(在大众中)使用基于人群的方法和大型电子病历 (EMR) 数据库来研究 DDI 对药物疗效和药物不良反应 (ADR) 的贡献。将开发挖掘方法来从 EMR 中挖掘 DDI,并将在体外进一步验证以下是具体目标:提出了一种新颖的动态嵌套病例对照设计来检测任一单个。开发了一种新的经验贝叶斯方法来测试药物和 DDI 引起的 ADR,并将估计错误发现率。在目标 2 中,提出了一种新的广义倾向评分方法来分析高维药物。与传统的倾向评分方法相比,该方法在识别高度相关药物的 ADR 效应方面具有更强的能力,使用目标 1 和 2 中开发的单变量和多变量数据挖掘方法,我们将检测新的。在我们的初步工作中,使用我们提出的方法和 220 万条记录的 EMR 数据库,确定了增加一种明确的 ADR(肌病)风险的药物和 DDI。已确定(p < 5�10-6),包括新发现的喹硫平和氯喹之间的相互作用。如果将它们一起服用,它们会增加肌病风险,比单独增加的风险高 2.17 倍。由于喹硫平通过 CYP3A4 途径抑制氯喹代谢并阻断 OATP1B1/1B3 跨膜转运蛋白,因此,这项工作的成功执行将展示完整的转化范围,从基于 EMR 的 DDI 发现开始,到阐明这些初步数据共同表明,我们的转化方法对于临床 DDI 研究来说是一种高度可行且极其强大的方法,可能会产生有价值的见解。这种新出现的公共卫生危险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lang Li其他文献
Lang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lang Li', 18)}}的其他基金
The Indiana University-Ohio State University Maternal and Pediatric Precision in Therapeutics Data, Model, Knowledge, and Research Coordination Center (IU-OSU MPRINT DMKRCC)
印第安纳大学-俄亥俄州立大学母婴精准治疗数据、模型、知识和研究协调中心 (IU-OSU MPRINT DMKRCC)
- 批准号:
10584124 - 财政年份:2022
- 资助金额:
$ 32.69万 - 项目类别:
The Indiana University-Ohio State University Maternal and Pediatric Precision in Therapeutics Data, Model, Knowledge, and Research Coordination Center (IU-OSU MPRINT DMKRCC)
印第安纳大学-俄亥俄州立大学母婴精准治疗数据、模型、知识和研究协调中心 (IU-OSU MPRINT DMKRCC)
- 批准号:
10487575 - 财政年份:2021
- 资助金额:
$ 32.69万 - 项目类别:
The Indiana University-Ohio State University Maternal and Pediatric Precision in Therapeutics Data, Model, Knowledge, and Research Coordination Center (IU-OSU MPRINT DMKRCC)
印第安纳大学-俄亥俄州立大学母婴精准治疗数据、模型、知识和研究协调中心 (IU-OSU MPRINT DMKRCC)
- 批准号:
10676275 - 财政年份:2021
- 资助金额:
$ 32.69万 - 项目类别:
The Indiana University-Ohio State University Maternal and Pediatric Precision in Therapeutics Data, Model, Knowledge, and Research Coordination Center (IU-OSU MPRINT DMKRCC)
印第安纳大学-俄亥俄州立大学母婴精准治疗数据、模型、知识和研究协调中心 (IU-OSU MPRINT DMKRCC)
- 批准号:
10309155 - 财政年份:2021
- 资助金额:
$ 32.69万 - 项目类别:
An informatics bridge over the valley of death for cancer Phase I trials of drug-combination therapies
跨越癌症死亡之谷的信息学桥梁 药物组合疗法的 I 期试验
- 批准号:
10494095 - 财政年份:2021
- 资助金额:
$ 32.69万 - 项目类别:
An informatics bridge over the valley of death for cancer Phase I trials of drug-combination therapies
跨越癌症死亡之谷的信息学桥梁 药物组合疗法的 I 期试验
- 批准号:
10305083 - 财政年份:2021
- 资助金额:
$ 32.69万 - 项目类别:
A Translational Bioinformatics Approach in the Drug Interaction Research
药物相互作用研究中的转化生物信息学方法
- 批准号:
8761156 - 财政年份:2014
- 资助金额:
$ 32.69万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 32.69万 - 项目类别:
Repurposing Atovaquone for Preventing Ovarian Cancer: An Example of Successful Inhibition of Oxidative Phosphorylation
重新利用阿托伐醌预防卵巢癌:成功抑制氧化磷酸化的一个例子
- 批准号:
10524134 - 财政年份:2020
- 资助金额:
$ 32.69万 - 项目类别:
Repurposing Atovaquone for Preventing Ovarian Cancer: An Example of Successful Inhibition of Oxidative Phosphorylation
重新利用阿托伐醌预防卵巢癌:成功抑制氧化磷酸化的一个例子
- 批准号:
10813900 - 财政年份:2020
- 资助金额:
$ 32.69万 - 项目类别:
Repurposing Atovaquone for Preventing Ovarian Cancer: An Example of Successful Inhibition of Oxidative Phosphorylation
重新利用阿托伐醌预防卵巢癌:成功抑制氧化磷酸化的一个例子
- 批准号:
10162548 - 财政年份:2020
- 资助金额:
$ 32.69万 - 项目类别:
Repurposing Atovaquone for Preventing Ovarian Cancer: An Example of Successful Inhibition of Oxidative Phosphorylation
重新利用阿托伐醌预防卵巢癌:成功抑制氧化磷酸化的一个例子
- 批准号:
10414919 - 财政年份:2020
- 资助金额:
$ 32.69万 - 项目类别: