NIDA National Early Warning System Network (iN3): An Innovative Approach
NIDA 国家预警系统网络 (iN3):创新方法
基本信息
- 批准号:8777695
- 负责人:
- 金额:$ 29.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdverse effectsAlcohol or Other Drugs useBehaviorCase StudyCenters for Disease Control and Prevention (U.S.)ChronicClinicalClinical assessmentsCollaborationsCommunicationCommunications MediaCommunitiesCrowdingDataData AnalysesData SourcesDisease OutbreaksDrug abuseDrug usageDrug userEpidemiologyEventFeedsFundingGoalsGrantHealth Knowledge, Attitudes, PracticeHealth PolicyHealth ProfessionalHeartInternetInterviewInvestigationKnowledgeLaboratoriesLocationMailsMeasuresMedicalMethodsNational Institute of Drug AbuseNewsletterOnline SystemsPaperPatientsPatternPerceptionPharmaceutical PreparationsPoliciesPolicy MakerProcessPsychotropic DrugsPublic HealthPublicationsReportingResearchResearch PersonnelScienceSecureSentinelSiteSocial IdentificationSourceStreamSubstance abuse problemSystemTimeToxicologyU-Series Cooperative AgreementsUnited StatesUnited States National Institutes of Healthdesignexperienceflexibilityimprovedinformation processinginnovationmemberpreventpublic health relevanceresponsesocialsurveillance networksymposiumtooltrendweb site
项目摘要
DESCRIPTION: This Cooperative Agreement application is designed to decrease the burden of substance abuse in the United States. Currently, knowledge of emerging drug use practices is derived from sporadic case reports that lack clinical accuracy, and existing surveillance systems that lag in reporting time. We will accelerate the response to emerging drug abuse trends by establishing iN3, an innovative NIDA National Early Warning System Network that will rapidly identify, evaluate, and disseminate information on emerging drug use patterns. The iN3 will harmonize multiple data streams to detect emerging patterns of psychoactive drug use and adverse effects. At the heart of iN3 is its Scientific Advisory Group (SAG). Members will assess two synergistic data streams to identify emerging patterns of drug use. The first data stream will be derived from the Toxicology Investigators Consortium ("ToxIC"), an NIH-supported network of medical toxicologists who specialize in recognizing and confirming sentinel events involving psychoactive substances. ToxIC investigators are located at 17 sentinel sites across the U.S. The SAG, in collaboration with NIDA, will analyze reports from ToxIC investigators' interviews of patients with acute, subacute, and chronic effects of emerging drug use. The second involves measures of drug use derived from social media (Twitter feeds), Erowid (a psychoactive encyclopedia), and Bluelight (a drug use web forum). We will enhance the synergy between these data streams by leveraging our innovative information processing approach developed in NIH grant R21DA30571 (PREDOSE), to analyze new content on Twitter, Erowid, and Bluelight to identify emerging drug use trends, and, potentially, geolocations. Data from semi-automated content analysis will be disseminated among ToxIC investigators to identify patterns related to emerging psychoactive drug use. Conversely, information from ToxIC investigators' bedside interviews will improve the analytical precision of the PREDOSE+ platform. Information from these data streams will be integrated by the Harmonized Coordinating Center (HCC) for SAG review. The SAG will disseminate findings via rapid communications such as interactive websites, listservs, and conferences. Our interdisciplinary team has extensive experience in NIH-funded drug epidemiology and emerging drug use trends. The Specific Aims of this proposal are to: 1) Identify new episodes of emerging drug use in multiple community-level indicators; and 2) Disseminate information about occurrence, identity, clinical, and adverse effects of emerging drug use. Innovation: Correlating social media data sources with bedside clinical examinations is highly innovative. Significance: By integrating advanced content analysis into an existing clinical network of sentinel sites, iN3 has the capacity to advance the field of drug surveillance from a reactive to anticipatory science. Impact: iN3 will have a public health impact by providing a tool that can inform efforts to truncate and prevent outbreaks of emerging drug use.
描述:本合作协议应用程序旨在减轻美国的药物滥用负担。目前,对新兴药物使用实践的了解来自缺乏临床准确性的零星病例报告以及报告时间滞后的现有监测系统。我们将通过建立创新的 NIDA 国家早期预警系统网络 iN3 来加速对新出现的药物滥用趋势的反应,该网络将快速识别、评估和传播有关新出现的药物滥用模式的信息。 iN3 将协调多个数据流,以检测新出现的精神药物使用模式和不良反应。 iN3 的核心是其科学咨询小组 (SAG)。成员将评估两个协同数据流,以确定新出现的药物使用模式。第一个数据流将来自毒理学调查者联盟(“ToxIC”),这是一个由 NIH 支持的医学毒理学家网络,专门识别和确认涉及精神活性物质的哨兵事件。 ToxIC 调查人员分布在美国 17 个哨点。SAG 与 NIDA 合作,将分析 ToxIC 调查人员对因新兴药物使用而产生急性、亚急性和慢性影响的患者的访谈报告。第二个涉及来自社交媒体(Twitter feed)、Erowid(精神百科全书)和 Bluelight(药物使用网络论坛)的药物使用测量。我们将利用 NIH 拨款 R21DA30571 (PREDOSE) 中开发的创新信息处理方法来增强这些数据流之间的协同作用,分析 Twitter、Erowid 和 Bluelight 上的新内容,以确定新兴的药物使用趋势,并可能确定地理位置。来自半自动内容分析的数据将在 ToxIC 研究人员之间传播,以识别与新兴精神活性药物使用相关的模式。相反,来自 ToxIC 研究人员床边访谈的信息将提高 PREDOSE+ 平台的分析精度。来自这些数据流的信息将由协调中心 (HCC) 进行整合,以供 SAG 审查。 SAG 将通过交互式网站、列表服务和会议等快速通信方式传播调查结果。我们的跨学科团队在 NIH 资助的药物流行病学和新兴药物使用趋势方面拥有丰富的经验。该提案的具体目标是: 1) 在多个社区层面的指标中识别新兴毒品使用的新情况; 2) 传播有关新出现的药物使用的发生、特性、临床和不良反应的信息。创新:将社交媒体数据源与床边临床检查相关联是高度创新的。意义:通过将先进的内容分析集成到现有的哨点临床网络中,iN3 有能力推动药物监测领域从反应性科学转变为预测性科学。影响:iN3 将提供一种工具,为截断和预防新出现的毒品使用爆发的工作提供信息,从而对公共卫生产生影响。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Toxicology Investigators Consortium Case Registry-the 2015 Experience.
毒理学调查者联盟病例登记——2015 年经验。
- DOI:10.1007/s13181-016-0580-6
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Farrugia,LynnA;Rhyee,SeanH;Campleman,SharanL;Ruha,Anne-Michelle;Weigand,Timothy;Wax,PaulM;Brent,Jeffrey;ToxicologyInvestigatorsConsortium
- 通讯作者:ToxicologyInvestigatorsConsortium
The Toxicology Investigators Consortium Case Registry--the 2014 Experience.
毒理学调查者联盟病例登记——2014 年的经验。
- DOI:10.1007/s13181-015-0507-7
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Rhyee,SeanH;Farrugia,Lynn;Campleman,SharanL;Wax,PaulM;Brent,Jeffrey;ToxicologyInvestigatorsConsortium
- 通讯作者:ToxicologyInvestigatorsConsortium
Characterizing Trends in Synthetic Cannabinoid Receptor Agonist Use from Patient Clinical Evaluations during Medical Toxicology Consultation.
- DOI:10.1080/02791072.2020.1851826
- 发表时间:2021-07
- 期刊:
- 影响因子:2.8
- 作者:Tebo C;Mazer-Amirshahi M;Wax P;Campleman S;Boyer E;Brent J;Sheth A;Daniuaityte R;Carlson R
- 通讯作者:Carlson R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward W Boyer其他文献
Edward W Boyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward W Boyer', 18)}}的其他基金
Mentoring in Advanced mHealth Technologies and Machine Learning for HIV/Drug Abuse Research
指导艾滋病毒/药物滥用研究的先进移动医疗技术和机器学习
- 批准号:
10529984 - 财政年份:2021
- 资助金额:
$ 29.97万 - 项目类别:
Mentoring in Advanced mHealth Technologies and Machine Learning for HIV/Drug Abuse Research
指导艾滋病毒/药物滥用研究的先进移动医疗技术和机器学习
- 批准号:
10668451 - 财政年份:2021
- 资助金额:
$ 29.97万 - 项目类别:
Mentoring in Advanced mHealth Technologies and Machine Learning for HIV/Drug Abuse Research
指导艾滋病毒/药物滥用研究的先进移动医疗技术和机器学习
- 批准号:
10469618 - 财政年份:2021
- 资助金额:
$ 29.97万 - 项目类别:
MyTPill: A Novel Strategy to Monitor Antiretroviral Adherence among HIV+ Prescription Opioid Users
MyTPill:监测 HIV 处方阿片类药物使用者抗逆转录病毒依从性的新策略
- 批准号:
10116617 - 财政年份:2019
- 资助金额:
$ 29.97万 - 项目类别:
MyTPill: A Novel Strategy to Monitor Antiretroviral Adherence among HIV+ Prescription Opioid Users
MyTPill:监测 HIV 处方阿片类药物使用者抗逆转录病毒依从性的新策略
- 批准号:
10381648 - 财政年份:2019
- 资助金额:
$ 29.97万 - 项目类别:
MyTPill: A Novel Strategy to Monitor Antiretroviral Adherence among HIV+ Prescription Opioid Users
MyTPill:监测 HIV 处方阿片类药物使用者抗逆转录病毒依从性的新策略
- 批准号:
10550038 - 财政年份:2019
- 资助金额:
$ 29.97万 - 项目类别:
MyTPill: A Novel Strategy to Monitor Antiretroviral Adherence among HIV+ Prescription Opioid Users
MyTPill:监测 HIV 处方阿片类药物使用者抗逆转录病毒依从性的新策略
- 批准号:
10380990 - 财政年份:2019
- 资助金额:
$ 29.97万 - 项目类别:
Mentoring in advanced mHealth interventions for drug abuse and HAART adherence
指导针对药物滥用和 HAART 依从性的先进移动医疗干预措施
- 批准号:
9446608 - 财政年份:2017
- 资助金额:
$ 29.97万 - 项目类别:
Mentoring in advanced mHealth interventions for drug abuse and HAART adherence
指导针对药物滥用和 HAART 依从性的先进移动医疗干预措施
- 批准号:
8789850 - 财政年份:2014
- 资助金额:
$ 29.97万 - 项目类别:
Mentoring in Advanced mHealth Technologies and Machine Learning for HIV/Drug Abuse Research
指导艾滋病毒/药物滥用研究的先进移动医疗技术和机器学习
- 批准号:
10258162 - 财政年份:2014
- 资助金额:
$ 29.97万 - 项目类别:
相似国自然基金
儿童药品不良反应主动监测中时序处理策略的方法学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
- 批准号:82274368
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
- 批准号:82273739
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Preclinical Psychopharmacology of Substance Abuse
药物滥用的临床前精神药理学
- 批准号:
9891589 - 财政年份:2020
- 资助金额:
$ 29.97万 - 项目类别:
Ambulatory Assessment of Simultaneous Alcohol and Marijuana Use: Impact on Alcohol Use and Consequences
同时使用酒精和大麻的动态评估:对酒精使用的影响和后果
- 批准号:
10019445 - 财政年份:2019
- 资助金额:
$ 29.97万 - 项目类别:
Determining the effects of "bath salts" on cognitive control and functional brain connectivity
确定“浴盐”对认知控制和功能性大脑连接的影响
- 批准号:
9896808 - 财政年份:2019
- 资助金额:
$ 29.97万 - 项目类别:
A social media intervention for high-intensity drinking in a national sample of emerging adults
对全国新兴成年人样本中高强度饮酒的社交媒体干预
- 批准号:
10006494 - 财政年份:2019
- 资助金额:
$ 29.97万 - 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
- 批准号:
10173211 - 财政年份:2019
- 资助金额:
$ 29.97万 - 项目类别: