Clinically Relevant Genome Variation Database
临床相关基因组变异数据库
基本信息
- 批准号:9047616
- 负责人:
- 金额:$ 24.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-23 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAmericanBioinformaticsBiological AssayCatalogingCatalogsClassificationClinicalClinical DataClinical Practice GuidelineClinical ResearchCollaborationsCommunitiesConsensusDNADataData SourcesDatabasesDepositionDevelopmentDiseaseDisease PathwayDocumentationEnsureEpidemiologyFundingGenesGeneticGenetic CounselingGenetic Population StudyGenetic screening methodGenetic studyGenomeGenomicsGoalsGuidelinesHealthHuman GeneticsInternetKnowledgeLaboratoriesLesionLettersLiteratureMachine LearningMedicalMedical GeneticsMedicineMendelian disorderMethodologyMolecularMutationNational Human Genome Research InstituteNorth CarolinaNucleotidesOnline Mendelian Inheritance In ManOntologyPatientsPhasePopulationPopulation GeneticsProcessProfessional OrganizationsResearchResearch PersonnelResourcesServicesSiteSocietiesTest ResultTestingTranslatingUnited States National Institutes of HealthUniversitiesUpdateVariantWorkbaseclinical careclinical sequencingclinically relevantcollegedata exchangedata miningdesignempoweredgene functiongenetic counselorgenetic variantgenome analysisgenome sequencinggenome-wideimprovedknowledge basemedical schoolsmeetingsnovelresearch clinical testingresponseuser-friendlyweb servicesworking group
项目摘要
We propose to create the world's premier database of genetic variants relevant to clinical care (Clinically
Relevant Genetic Variants Resource or CRVR). We will provide transparent data synthesis and consensus
opinion on the clinical utility of a given genetic variant across a spectrum of genetic lesions including single
nucleotide changes, small indels and structural variants. We will integrate with ClinVar, PharmGKB, and
OMIM and draw upon NHGRI initiatives including the Genome Sequencing and Analysis and Mendelian
Disorders Sequencing Centers, and the Clinical Sequencing Exploratory Research Centers. We will work
closely with other CRVR sites and NHGRI funded initiatives to improve deposition of data from clinical
laboratories. Our database will be built through three Aims. Aim 1 will engage and energize the clinical
genomics community around CRVR efforts. We will partner with the other CRVR and U41 investigators in
this activity as they will focus on engagement of professional societies, clinical testing laboratories, and the
broader clinical genomics community to ensure creation of a CRVR resource that meets anticipated community
needs including assembly of Disease-Specific and Mutation Type Working Groups (DSWGs and MTWGs)
comprised of expert clinical geneticists and molecular diagnosticians to establish metrics for the initial
classification of variants and integration of guidelines from professional organizations. Aim 2 will involve
creation of a CRVR CoreDB resource through expert review of the existing literature, locus databases,
and NHGRI initiatives. We will disseminate consensus findings on clinically relevant genetic variants and the
clinical implications of these variants, with supporting evidence and documentation of the consensus process.
Information will be aggregated using standard ontologies and advanced methodologies for handling
heterogeneous data to create a Core Database (CoreDB). The consensus of expert review will be
disseminated through a user-friendly web Portal (vetted by Genetic Counseling WG), web services for data
mining, and consensus clinical guidelines to the appropriate clinical and research communities. The results
will be organized by gene, variant, disease, pathway, and literature. Supporting evidence will also be curated
and disseminated, and the resource will be updated continuously as new information accumulates. Aim 3 will
involve deployment of machine-learning algorithms for semi- automatic identification of putative
Clinically Relevant Variants (CRVs). We will undertake data mining of the clinical and epidemiological
genetics literature and existing databases to identify putative clinically important variants. This will involve
mining data from ClinVar, OMIM, CSER, and the Mendelian centers aggregated in Aim 2. The Working Groups
formed in Aim 1 will establish criteria and oversee curators vetting variants. We will develop and optimize
disease- and gene-specific machine learning algorithms to facilitate rapid classification of variants based on
data provided by genetic testing services via ClinVar. We will integrate population-genetic data inferred from at
least 25 reference populations from the 1000 Genomes Project and other large endeavors into our machine
learning approaches so as to infer the global relevance of CRVs discovered here.
我们建议创建与临床护理相关的遗传变异数据库(临床上)
相关的遗传变体资源或CRVR)。我们将提供透明的数据综合和共识
关于给定遗传变异的临床效用的意见,包括单个遗传病变
核苷酸变化,小插入和结构变体。我们将与Clinvar,PharmGKB和
OMIM并借鉴NHGRI计划,包括基因组测序和分析以及Mendelian
疾病测序中心和临床测序探索性研究中心。我们将工作
与其他CRVR站点和NHGRI资助的计划紧密联系,以改善临床数据的数据
实验室。我们的数据库将通过三个目标构建。 AIM 1将参与并激发临床
基因组学围绕CRVR努力。我们将与其他CRVR和U41调查人员合作
这项活动将着重于专业社会的参与,临床测试实验室以及
更广泛的临床基因组学社区,以确保创建符合预期社区的CRVR资源
包括疾病特异性和突变类型工作组的组装(DSWG和MTWG)的需求
由专家临床遗传学家和分子诊断者组成,以建立初始的指标
变体的分类和专业组织的指南集成。 AIM 2将涉及
通过对现有文献,基因座数据库的专家审查创建CRVR CoreDB资源,
和NHGRI计划。我们将在临床相关的遗传变异和
这些变体的临床意义,并提供了证据和共识过程的证据。
信息将使用标准本体论和高级方法进行汇总
异质数据创建一个核心数据库(CoredB)。专家审查的共识将是
通过用户友好的Web门户(由遗传咨询WG审查),Web服务进行数据传播
采矿以及适当的临床和研究社区的共识临床指南。结果
将由基因,变体,疾病,途径和文献组织。支持证据也将策划
并传播,随着新信息的积累,资源将不断更新。目标3意志
涉及部署机器学习算法,以半自动识别推定
临床相关变体(CRV)。我们将进行临床和流行病学的数据挖掘
遗传学文献和现有数据库,以识别推定的临床上重要变体。这将涉及
来自Clinvar,Omim,CSER和Mendelian中心的采矿数据在AIM 2中汇总。工作组
在AIM 1中形成的将建立标准并监督策展人审查变体。我们将开发和优化
疾病和基因特异性机器学习算法,以促进基于变体的快速分类
基因测试服务通过Clinvar提供的数据。我们将整合从AT推断的人口基因数据
至少有25个来自1000个基因组项目的参考人群和我们机器的其他大型努力
学习方法是为了推断此处发现的CRV的全球相关性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Daniel Bustamante其他文献
Carlos Daniel Bustamante的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Daniel Bustamante', 18)}}的其他基金
Biorepository of Human iPSCs for Studying Dilated and Hypertrophic Cardiomyopathy
用于研究扩张型和肥厚型心肌病的人类 iPSC 生物储存库
- 批准号:
9031800 - 财政年份:2014
- 资助金额:
$ 24.95万 - 项目类别:
Why We Can't Wait: Conference to Eliminate Health Disparities in Genomics
为什么我们不能等待:消除基因组学健康差异的会议
- 批准号:
8785928 - 财政年份:2014
- 资助金额:
$ 24.95万 - 项目类别:
Methods for high-resolution analysis of genetic effects on gene expression
高分辨率分析遗传对基因表达影响的方法
- 批准号:
9270646 - 财政年份:2013
- 资助金额:
$ 24.95万 - 项目类别:
Methods for high-resolution analysis of genetic effects on gene expression
高分辨率分析遗传对基因表达影响的方法
- 批准号:
8915307 - 财政年份:2013
- 资助金额:
$ 24.95万 - 项目类别:
Methods for high-resolution analysis of genetic effects on gene expression
高分辨率分析遗传对基因表达影响的方法
- 批准号:
8585947 - 财政年份:2013
- 资助金额:
$ 24.95万 - 项目类别:
Why We Cant Wait: Conference to Eliminate Health Disparities in Genomics
为什么我们不能等待:消除基因组学健康差异的会议
- 批准号:
8529747 - 财政年份:2013
- 资助金额:
$ 24.95万 - 项目类别:
Methods for high-resolution analysis of genetic effects on gene expression
高分辨率分析遗传对基因表达影响的方法
- 批准号:
8915306 - 财政年份:2013
- 资助金额:
$ 24.95万 - 项目类别:
Methods for high-resolution analysis of genetic effects on gene expression
高分辨率分析遗传对基因表达影响的方法
- 批准号:
8894321 - 财政年份:2013
- 资助金额:
$ 24.95万 - 项目类别:
Methods for high-resolution analysis of genetic effects on gene expression
高分辨率分析遗传对基因表达影响的方法
- 批准号:
8711566 - 财政年份:2013
- 资助金额:
$ 24.95万 - 项目类别:
相似海外基金
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Association of Phenotypes and Genotype with Treatment Response in Psoriatic Arthritis
表型和基因型与银屑病关节炎治疗反应的关联
- 批准号:
10723557 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
The microbiome associated with oral Leukoplakia: A multi-omics mechanistic study
与口腔白斑相关的微生物组:一项多组学机制研究
- 批准号:
10870268 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别: