Mammographic Density and Tissue Asymmetry Based Breast Cancer Risk Stratification

基于乳房 X 光密度和组织不对称性的乳腺癌风险分层

基本信息

  • 批准号:
    8826571
  • 负责人:
  • 金额:
    $ 22.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-04-01 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Despite being one of the leading cancers in women, breast cancer detection rates in a repeat screened population are quite low (i.e., 3 to 5 cancers detected per 1000 examinations). Screening for the early detection of breast cancer has been controversial from the start, but recent events highlight the need to develop and optimize individualized screening regimens by identifying women who are at higher than average risk of developing breast cancer in the near future, namely within five years. Establishing optimal individualized screening regimens that facilitate women to be screened at different intervals and/or with different imaging methods based on their assigned risk group will not only increase sensitivity, resulting in the detection of earlier cancers, but also reduce overall cost and anxiet associated with screening programs. Breast cancer risk assessment has been studied for many years; however, due to reasonably low positive predictive values there are no existing risk models that are universally accepted in routine clinical practice, in particular as related to screening and diagnosis. There is no doubt that a breast cancer risk model with high discriminatory power will enable an increase in efficiency, efficacy, and cost effectiveness of screening paradigms. We propose to develop and test an innovative risk predictor that is based primarily on computed image features representing bilateral mammographic tissue density asymmetry between left and right breasts. As important, we will develop and test this predictor using mammograms acquired prior to any depiction of a highly suspicious abnormality leading to a biopsy and/or a verification of cancer. To achieve our objectives we will assemble a large and diverse image database of full-field digital mammography (FFDM) images with sequentially available images and related clinical information. The database will include three groups of cases, namely (1) positive cases that were verified to have cancer one to six years after the first available negative FFDM examination, (2) screening negative cases that have not been recalled during the period of interest, and (3) recalled and/or biopsied cases due to suspicious mammographic findings, but later proven to be negative or benign. Computed bilateral mammographic tissue asymmetry features will be used to develop the new risk predictor. In addition to evaluating the overall classification performance on the entire database, we will investigate the reproducibility of the predictor's results and the relationship between predictor's classification performance and the time lag between a negative FFDM in question and the first recall due to the actual detection of a highly suspicious finding leading to a biopsy and/or a confirmed cancer. We will also assess the impact, if any, of several other commonly used risk factors (i.e., age, family history, and breast density BIRADS) on predictor's performance. A bootstrapping method will be used to compute predictor's performance levels and 95% confidence intervals. By incorporating this risk predictor with other existing risk models, we will investigate the feasibility of improving discriminatory power in predicting risk of individual women developing breast cancer in near-term (<5 years).
描述(由申请人提供):尽管乳腺癌是女性的主要癌症之一,但重复筛查人群中的乳腺癌检出率相当低(即每 1000 次检查中检出 3 至 5 种癌症)。早期发现乳腺癌的筛查从一开始就存在争议,但最近的事件强调需要通过识别在不久的将来(即五年内)患乳腺癌的风险高于平均水平的女性来制定和优化个体化筛查方案。年。建立最佳的个体化筛查方案,促进女性根据指定的风险组以不同的时间间隔和/或使用不同的成像方法进行筛查,不仅可以提高敏感性,从而检测出早期癌症,还可以降低总体成本和与癌症相关的焦虑。筛选计划。乳腺癌风险评估已研究多年;然而,由于阳性预测值相当低,目前还没有在常规临床实践中普遍接受的风险模型,特别是与筛查和诊断相关的风险模型。毫无疑问,具有高辨别能力的乳腺癌风险模型将能够提高筛查范式的效率、功效和成本效益。我们建议开发和测试一种创新的风险预测器,该预测器主要基于代表左右乳房之间双边乳房X线照相组织密度不对称的计算图像特征。同样重要的是,我们将使用在描述导致活检和/或癌症验证的高度可疑异常之前获得的乳房X光照片来开发和测试该预测器。为了实现我们的目标,我们将建立一个大型且多样化的全视野数字乳腺 X 线摄影 (FFDM) 图像数据库,其中包含连续可用的图像和相关临床信息。该数据库将包括三组病例,即(1)在第一组病例后一到六年被证实患有癌症的阳性病例 可用的阴性 FFDM 检查,(2) 筛查在感兴趣期间未回忆起的阴性病例,以及 (3) 由于可疑的乳房 X 光检查发现而回忆和/或活检病例,但后来证明是阴性或良性。计算出的双侧乳房X线照相组织不对称特征将用于开发新的风险预测器。除了评估整个数据库的整体分类性能之外,我们还将研究预测器结果的再现性以及预测器结果之间的关系 分类性能以及相关阴性 FFDM 与由于实际检测到导致活检和/或确诊癌症的高度可疑发现而首次召回之间的时间滞后。我们还将评估其他几个常用风险因素(即年龄、家族史和乳腺密度 BIRADS)对预测器性能的影响(如果有)。 Bootstrapping 方法将用于计算预测器的性能水平和 95% 置信区间。通过将该风险预测器与其他现有风险模型相结合,我们将 研究提高预测个体女性近期(<5 年)罹患乳腺癌风险的歧视力的可行性。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reduction of false-positive recalls using a computerized mammographic image feature analysis scheme.
  • DOI:
    10.1088/0031-9155/59/15/4357
  • 发表时间:
    2014-08-07
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Tan M;Pu J;Zheng B
  • 通讯作者:
    Zheng B
Prediction of breast cancer risk using a machine learning approach embedded with a locality preserving projection algorithm.
  • DOI:
    10.1088/1361-6560/aaa1ca
  • 发表时间:
    2018-01-30
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Heidari M;Khuzani AZ;Hollingsworth AB;Danala G;Mirniaharikandehei S;Qiu Y;Liu H;Zheng B
  • 通讯作者:
    Zheng B
Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model.
A new approach to develop computer-aided detection schemes of digital mammograms.
  • DOI:
    10.1088/0031-9155/60/11/4413
  • 发表时间:
    2015-06-07
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Tan M;Qian W;Pu J;Liu H;Zheng B
  • 通讯作者:
    Zheng B
Assessment of a Four-View Mammographic Image Feature Based Fusion Model to Predict Near-Term Breast Cancer Risk.
  • DOI:
    10.1007/s10439-015-1316-5
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Tan M;Pu J;Cheng S;Liu H;Zheng B
  • 通讯作者:
    Zheng B
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bin Zheng其他文献

Bin Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bin Zheng', 18)}}的其他基金

Administrative Core
行政核心
  • 批准号:
    10334982
  • 财政年份:
    2022
  • 资助金额:
    $ 22.68万
  • 项目类别:
Oklahoma Center of Medical Imaging for Translational Cancer Research
俄克拉荷马州转化癌症研究医学影像中心
  • 批准号:
    10334981
  • 财政年份:
    2022
  • 资助金额:
    $ 22.68万
  • 项目类别:
Regulation of interferon signaling in melanoma by the cohesin complex protein STAG2 via 3D genome organization
粘连蛋白复合物 STAG2 通过 3D 基因组组织调节黑色素瘤中的干扰素信号传导
  • 批准号:
    10905899
  • 财政年份:
    2022
  • 资助金额:
    $ 22.68万
  • 项目类别:
Targeting the LKB1-AMPK pathway in melanoma: Mechanism and preclinical evaluation
靶向黑色素瘤中的 LKB1-AMPK 通路:机制和临床前评估
  • 批准号:
    9690391
  • 财政年份:
    2012
  • 资助金额:
    $ 22.68万
  • 项目类别:
Mammographic Density and Tissue Asymmetry Based Breast Cancer Risk Stratification
基于乳房 X 光密度和组织不对称性的乳腺癌风险分层
  • 批准号:
    8691598
  • 财政年份:
    2012
  • 资助金额:
    $ 22.68万
  • 项目类别:
Targeting the LKB1-AMPK pathway in melanoma: Mechanism and preclinical evaluation
靶向黑色素瘤中的 LKB1-AMPK 通路:机制和临床前评估
  • 批准号:
    8723596
  • 财政年份:
    2012
  • 资助金额:
    $ 22.68万
  • 项目类别:
Targeting the LKB1-AMPK PATHWAY in Melanoma: Mechanism and Preclinical Evaluation
靶向黑色素瘤中的 LKB1-AMPK 通路:机制和临床前评估
  • 批准号:
    8466942
  • 财政年份:
    2012
  • 资助金额:
    $ 22.68万
  • 项目类别:
Targeting the LKB1-AMPK pathway in melanoma: Mechanism and preclinical evaluation
靶向黑色素瘤中的 LKB1-AMPK 通路:机制和临床前评估
  • 批准号:
    8657935
  • 财政年份:
    2012
  • 资助金额:
    $ 22.68万
  • 项目类别:
Mammographic Density and Tissue Asymmetry Based Breast Cancer Risk Stratification
基于乳房 X 光密度和组织不对称性的乳腺癌风险分层
  • 批准号:
    8282037
  • 财政年份:
    2012
  • 资助金额:
    $ 22.68万
  • 项目类别:
Targeting the LKB1-AMPK PATHWAY in Melanoma: Mechanism and Preclinical Evaluation
靶向黑色素瘤中的 LKB1-AMPK 通路:机制和临床前评估
  • 批准号:
    8275994
  • 财政年份:
    2012
  • 资助金额:
    $ 22.68万
  • 项目类别:

相似国自然基金

LPA通过LPAR1和3亚型调控良性前列腺增生纤维样改变的机制研究
  • 批准号:
    82370773
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
番茄红素对双酚A暴露相关良性前列腺增生的影响及免疫调控机制研究
  • 批准号:
    82304142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
拷贝数突变致良性癫痫伴中央颞区棘波语言障碍的认知心理学及神经影 像学研究
  • 批准号:
    82371201
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
I-Afadin调控三细胞间连接开闭在良性输尿管狭窄中的作用及其机制研究
  • 批准号:
    82370691
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
良性心理应激通过肠道菌群/胆汁酸代谢/NKT细胞调控轴抑制肿瘤肝转移的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Genome-wide Sequencing to Identify the Genes Responsible for Enchondromatoses and Related Malignant Tumors
全基因组测序以确定导致软骨瘤病和相关恶性肿瘤的基因
  • 批准号:
    10302664
  • 财政年份:
    2021
  • 资助金额:
    $ 22.68万
  • 项目类别:
Genome-wide Sequencing to Identify the Genes Responsible for Enchondromatoses and Related Malignant Tumors
全基因组测序以确定导致软骨瘤病和相关恶性肿瘤的基因
  • 批准号:
    10447729
  • 财政年份:
    2021
  • 资助金额:
    $ 22.68万
  • 项目类别:
Treating Primary aldosteronism-induced hypertension via microwave thermal therapy
微波热疗治疗原发性醛固酮增多症高血压
  • 批准号:
    10320833
  • 财政年份:
    2020
  • 资助金额:
    $ 22.68万
  • 项目类别:
Treating Primary aldosteronism-induced hypertension via microwave thermal therapy
微波热疗治疗原发性醛固酮增多症高血压
  • 批准号:
    10552540
  • 财政年份:
    2020
  • 资助金额:
    $ 22.68万
  • 项目类别:
Modeling Retinoblastoma Initiation Using 3D-Retinal Organoids
使用 3D 视网膜类器官模拟视网膜母细胞瘤的发生
  • 批准号:
    10611878
  • 财政年份:
    2020
  • 资助金额:
    $ 22.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了