Broad Scale Genomic Analysis to Find Genes Associated with Depression Under Stres
大规模基因组分析寻找与压力下抑郁症相关的基因
基本信息
- 批准号:8573528
- 负责人:
- 金额:$ 46.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffectAmericanAntidepressive AgentsArchitectureAwarenessBiologicalCandidate Disease GeneChronicChronic stressCodeComplexDataData SetDepressed moodDevelopmentDiseaseEffectivenessEnvironmental Risk FactorEpidemiologic StudiesEpidemiologyEtiologyFrequenciesFunctional RNAGenesGeneticGenetic PolymorphismGenomeGenomicsGoalsHealthHeart DiseasesIndividualInheritedInternshipsInvestigationLife StressMajor Depressive DisorderMedicalMental DepressionMental disordersMethodsModelingPathway interactionsPatientsPatternPhenotypePhysiciansPublic HealthResearch DesignRetirementRetrospective StudiesRiskSamplingStressTestingTimeTrainingVariantWorkWorld Health Organizationbasecase controlcohortdepressive symptomsdesigndisabilitydisorder riskexomeexperiencefallsgenetic variantgenome wide association studygenome-wideimprovedinnovationnovelprospectivepublic health relevancestressortreatment response
项目摘要
DESCRIPTION (provided by applicant): Despite hundreds of linkage and association studies, including eight recent case-control genome-wide association studies (GWAS), there has been limited progress in identifying specific genes associated with depression. Epidemiological evidence indicates that life stress is a key factor in the etiology of depression. Indeed, there is
growing recognition that accounting for stress facilitates the identification of genes important in
the development of depression. Because of methodological limitations however, gene x stress studies have been limited from utilizing the broad-scale genomic approaches that have been successful in identifying genes in other complex disorders. Our long-term goal is to elucidate the pathophysiological architecture underlying depression to facilitate the development of improved treatments. Our objective in this application is to identify genetic variants associated with the development of depression under stress by utilizing medical internship as a model. The power and effectiveness of traditional gene x stress interaction studies have been compromised by the following study design limitations: 1) substantial variation in the type and intensity of stress between subjects 2) retrospective design and 3) loss of power due to tests of statistical interaction. Designing methods to overcome these limitations has been difficult because the onset of chronic stress is difficult to predict beforehand and the type of stress encountered by individuals varies greatly. Medical internship, the first year of professional physician training, presents a unique situation in which we can prospectively predict the onset of a uniform, chronic stressor and a dramatic increase in depressive symptoms. We hypothesize that both common and rare SNPs from across the genome will interact with internship stress to impact depressive symptom phenotypes. To test this hypothesis, we propose the following three specific aims: 1) identify longitudinal patterns of depressive symptoms under internship stress and factors associated with the depressive symptom patterns, 2) identify common and rare, functional genetic variants associated with depressive symptoms and depressive symptom trajectories during internship stress using cutting edge GWAS and Exome chip analysis and 3) assess whether significant associations with depressive symptoms in the intern sample replicate in other depression samples. Our approach is innovative because it takes advantage of a naturally occurring stress to overcome limitations of existing studies and allows us to perform a broad-scale, longitudinal cohort gene x stress study. This project is significant because it has the potential to identify key genetic factors involved in depression under stress, an advance that holds promises in predicting treatment response and identifying novel targets for antidepressant development.
描述(由申请人提供):尽管有数百项连锁和关联研究,包括最近的八项病例对照全基因组关联研究(GWAS),但在识别与抑郁症相关的特定基因方面进展有限。流行病学证据表明,生活压力是抑郁症病因的关键因素。确实,有
人们越来越认识到,考虑压力有助于识别重要的基因
抑郁症的发展。然而,由于方法学上的限制,基因 x 应激研究在利用大规模基因组方法方面受到限制,而这些方法已经成功地鉴定了其他复杂疾病中的基因。我们的长期目标是阐明抑郁症的病理生理学结构,以促进改进治疗方法的开发。我们在此应用中的目标是通过利用医学实习作为模型来识别与压力下抑郁症发展相关的遗传变异。传统基因 x 压力相互作用研究的功效和有效性受到以下研究设计限制的影响:1) 受试者之间压力类型和强度的巨大差异 2) 回顾性设计和 3) 由于统计相互作用测试而导致功效损失。设计克服这些限制的方法一直很困难,因为慢性压力的发作很难事先预测,而且个体遇到的压力类型差异很大。医学实习是专业医生培训的第一年,它提供了一种独特的情况,在这种情况下,我们可以前瞻性地预测一致的、慢性的压力源的发作和抑郁症状的急剧增加。我们假设整个基因组中常见和罕见的 SNP 都会与实习压力相互作用,从而影响抑郁症状表型。为了检验这一假设,我们提出以下三个具体目标:1)识别实习压力下抑郁症状的纵向模式以及与抑郁症状模式相关的因素,2)识别与抑郁症状和抑郁症状相关的常见和罕见的功能性遗传变异使用尖端的 GWAS 和外显子组芯片分析来确定实习压力期间的轨迹,3) 评估实习生样本中与抑郁症状的显着关联是否会在其他抑郁样本中复制。我们的方法是创新的,因为它利用自然发生的压力来克服现有研究的局限性,并使我们能够进行大规模、纵向队列基因 x 压力研究。该项目意义重大,因为它有可能识别出压力下抑郁症的关键遗传因素,这一进展有望预测治疗反应和确定抗抑郁药物开发的新靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SRIJAN SEN其他文献
SRIJAN SEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SRIJAN SEN', 18)}}的其他基金
Mobile Technology to Identify Behavioral Mechanisms Linking Genetic Variation and Depression
移动技术识别遗传变异和抑郁症之间的行为机制
- 批准号:
10728697 - 财政年份:2023
- 资助金额:
$ 46.74万 - 项目类别:
Broad Scale Genomic Analysis to Find Genes Associated with Depression Under Stres
大规模基因组分析寻找与压力下抑郁症相关的基因
- 批准号:
8874303 - 财政年份:2013
- 资助金额:
$ 46.74万 - 项目类别:
Mobile Technology to Identify Behavorial Mechanisms Linking Genetic Variation and Depression
移动技术识别与遗传变异和抑郁症相关的行为机制
- 批准号:
10161829 - 财政年份:2013
- 资助金额:
$ 46.74万 - 项目类别:
Broad Scale Genomic Analysis to Find Genes Associated with Depression Under Stres
大规模基因组分析寻找与压力下抑郁症相关的基因
- 批准号:
9317292 - 财政年份:2013
- 资助金额:
$ 46.74万 - 项目类别:
Mobile Technology to Identify Behavorial Mechanisms Linking Genetic Variation and Depression
移动技术识别与遗传变异和抑郁症相关的行为机制
- 批准号:
10399597 - 财政年份:2013
- 资助金额:
$ 46.74万 - 项目类别:
Mobile Technology to Identify Behavorial Mechanisms Linking Genetic Variation and Depression
移动技术识别与遗传变异和抑郁症相关的行为机制
- 批准号:
9524194 - 财政年份:2013
- 资助金额:
$ 46.74万 - 项目类别:
Medical Internship as a Model to Find Gene x Stress Interactions in Depression
医学实习作为寻找抑郁症中基因与压力相互作用的模型
- 批准号:
8460930 - 财政年份:2011
- 资助金额:
$ 46.74万 - 项目类别:
Utilizing Medical Internship to Identify Genetic Variation Associated with Depres
利用医学实习来识别与抑郁症相关的基因变异
- 批准号:
8164789 - 财政年份:2011
- 资助金额:
$ 46.74万 - 项目类别:
Medical Internship as a Model to Find Gene x Stress Interactions in Depression
医学实习作为寻找抑郁症中基因与压力相互作用的模型
- 批准号:
8278523 - 财政年份:2011
- 资助金额:
$ 46.74万 - 项目类别:
Medical Internship as a Model to Find Gene x Stress Interactions in Depression
医学实习作为寻找抑郁症中基因与压力相互作用的模型
- 批准号:
8645757 - 财政年份:2011
- 资助金额:
$ 46.74万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 46.74万 - 项目类别:
Health and Financial Costs of Unequal Care: Colorectal Cancer as a Case Study
不平等护理的健康和财务成本:结直肠癌案例研究
- 批准号:
10656807 - 财政年份:2023
- 资助金额:
$ 46.74万 - 项目类别:
A mobile health framework for left ventricular end diastolic pressure diagnostics and monitoring.
用于左心室舒张末压诊断和监测的移动健康框架。
- 批准号:
10601929 - 财政年份:2023
- 资助金额:
$ 46.74万 - 项目类别:
The roles of fosfomycin resistant subpopulations of Escherichia coli in urinary tract infection.
大肠杆菌磷霉素耐药亚群在尿路感染中的作用。
- 批准号:
10603417 - 财政年份:2023
- 资助金额:
$ 46.74万 - 项目类别: