Mobile Technology to Identify Behavioral Mechanisms Linking Genetic Variation and Depression
移动技术识别遗传变异和抑郁症之间的行为机制
基本信息
- 批准号:10728697
- 负责人:
- 金额:$ 19.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAmericanAntidepressive AgentsArchitectureBehaviorBehavioral MechanismsBiologicalBiological PsychiatryCOVID-19COVID-19 pandemicChild CareChronicClinicalDNA Sequencing FacilityDataData ElementData SourcesDevelopmentDiagnosisDiseaseFundingGenesGenetic VariationGenotypeGoalsGrantHealth TechnologyHuman CharacteristicsHuman ResourcesIndividualInternal MedicineInternshipsJournalsLinkMajor Depressive DisorderMeasuresMedicalMedicineMental DepressionMichiganMonitorMoodsNew EnglandPaperParentsPathway interactionsPhenotypePhysiciansPopulationProductivityPsychiatryPublishingRiskStressTimeTrainingTranslatingUniversitiesVariantWorld Health Organizationcohortdepressive symptomsdesigndigital medicinedisabilitygenetic variantgenome wide association studygenome-wideimprovedmHealthmobile computingmultimodalityprospectiverecruitstressortool
项目摘要
Project Summary/Abstract
Large scale genome-wide association studies have identified genetic variation definitively associated with
major depression. To translate this advancement into improved diagnosis, monitoring, and treatment, a critical
next step is to elucidate the behavioral mechanisms linking the implicated genetic variation with depression.
Unfortunately, the large-scale studies that have identified associated variants have typically employed single
time point and limited phenotypic assessments that are not suited to study mechanisms linking genes and
depression, a chronic multi-modal disease. Our long-term goal is to elucidate the pathophysiological
architecture underlying depression to facilitate the development of improved treatments. Our objective in the
parent R01 application is to understand how genetic variants associated with the development of depression
exert their effect. Medical internship, the first year of professional physician training, presents a unique
situation in which we can prospectively predict the onset of a uniform, chronic stressor and follow the
development of depressive symptoms. We have found that rates of depression increase dramatically, from 4%
prior to internship to 26% during internship year. Our intern cohort is an ideal population to closely monitor the
development of depression with recent mobile health technology as a tool to follow these individuals in real-
time, with objective measures. For the current grant period, we proposed the following three specific aims: 1)
Identify data driven features, derived from mobile data elements, that predict short-term risk for mood changes
and depressive episodes. 2) Identify genetic variants associated with depression under stress. 3) Identify
relationship between depression-associated genetic variation and objective depression-associated mobile
features. The grant period has been highly productive to date, with data collected from the study as primary
data source for papers published in New England Journal of Medicine, BMJ, Annals of Internal Medicine,
Nature Human Behavior, American Journal of Psychiatry, Biological Psychiatry, NPJ Digital Medicine among
other journals. Unfortunately, the COVID-19 pandemic disrupted this study in multiple ways and has delayed
completion of the Aims. With university shutdowns and loss of childcare, the availability and bandwidth for our
clinical recruitment and analysis staff were substantially reduced. Similarly, with the burden COVID-19 placed
on our recruitment population of training physicians, our recruitment rate was also compromised. Further, the
genotyping proposed as part of the current R01 through was delayed by 9 months because of COVID-19
related delays at the Michigan Sequencing Core. This supplement seeks to provide funding for personnel to
avoid hardship and allow completion of the study aims.
项目概要/摘要
大规模全基因组关联研究已确定遗传变异与
严重抑郁症。为了将这一进步转化为改进的诊断、监测和治疗,一个关键的
下一步是阐明将相关遗传变异与抑郁症联系起来的行为机制。
不幸的是,已经识别相关变体的大规模研究通常采用单一的
时间点和有限的表型评估不适合研究基因和基因之间的联系机制
抑郁症,一种慢性多模式疾病。我们的长期目标是阐明病理生理学
抑郁症的基础架构,以促进改进治疗方法的开发。我们的目标是
父 R01 应用程序是为了了解遗传变异如何与抑郁症的发展相关
发挥他们的作用。医学实习是专业医师培训的第一年,呈现出独特的
在这种情况下,我们可以前瞻性地预测一致的、慢性的压力源的发生,并遵循
抑郁症状的发展。我们发现抑郁症发病率急剧上升,从 4%
实习前至实习期间的 26%。我们的实习生群体是密切监控情况的理想人群
利用最新的移动医疗技术作为实时跟踪这些人的工具来控制抑郁症的发展
时间,并采取客观措施。对于当前的资助期,我们提出了以下三个具体目标:1)
识别源自移动数据元素的数据驱动特征,可预测情绪变化的短期风险
和抑郁发作。 2) 识别与压力下抑郁症相关的遗传变异。 3)识别
抑郁症相关遗传变异与客观抑郁症相关移动之间的关系
特征。迄今为止,资助期非常富有成效,从研究中收集的数据是主要的
发表在《新英格兰医学杂志》、《BMJ》、《内科医学年鉴》、
《自然人类行为》、《美国精神病学杂志》、《生物精神病学》、《NPJ 数字医学》等
其他期刊。不幸的是,COVID-19 大流行以多种方式扰乱了这项研究并推迟了
目标的完成情况。随着大学关闭和儿童保育服务的丧失,我们的可用性和带宽
临床招聘和分析人员大幅减少。同样,随着 COVID-19 的负担
在我们的培训医生招募人数上,我们的招募率也受到了影响。此外,
由于 COVID-19,作为当前 R01 一部分提出的基因分型被推迟了 9 个月
密歇根测序中心的相关延误。该补充文件旨在为人员提供资金
避免困难并完成学习目标。
项目成果
期刊论文数量(45)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reply to: the liptak-stouffer test for meta-analyses.
回复:用于荟萃分析的 liptak-stouffer 检验。
- DOI:
- 发表时间:2015-01-01
- 期刊:
- 影响因子:10.6
- 作者:Byrd, Amy L;Wright, Aidan G C;Sen, Srijan;Shedden, Kerby;Manuck, Stephen B
- 通讯作者:Manuck, Stephen B
Healing Medicine's Future: Prioritizing Physician Trainee Mental Health.
治愈医学的未来:优先考虑实习医师的心理健康。
- DOI:
- 发表时间:2016-06-01
- 期刊:
- 影响因子:0
- 作者:Baker, Kathryn;Sen, Srijan
- 通讯作者:Sen, Srijan
Sleep Disturbance and Short Sleep as Risk Factors for Depression and Perceived Medical Errors in First-Year Residents.
睡眠障碍和睡眠不足是第一年住院医师抑郁症和感知医疗错误的危险因素。
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:5.6
- 作者:Kalmbach, David A;Arnedt, J Todd;Song, Peter X;Guille, Constance;Sen, Srijan
- 通讯作者:Sen, Srijan
Altitude and risk of depression and anxiety: findings from the intern health study.
海拔高度与抑郁和焦虑的风险:实习生健康研究的结果。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Kious, Brent M;Bakian, Amanda;Zhao, Joan;Mickey, Brian;Guille, Constance;Renshaw, Perry;Sen, Srijan
- 通讯作者:Sen, Srijan
Socioeconomic status and mental health: what is the causal relationship?: editorial comment to Kristian Tambs et al. 'Genetic and environmental contributions to the relationship between education and anxiety disorders. A twin study' (1).
社会经济地位和心理健康:因果关系是什么?:克里斯蒂安·塔姆布斯等人的社论评论。
- DOI:
- 发表时间:2012-03
- 期刊:
- 影响因子:6.7
- 作者:Sen; Srijan
- 通讯作者:Srijan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SRIJAN SEN其他文献
SRIJAN SEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SRIJAN SEN', 18)}}的其他基金
Broad Scale Genomic Analysis to Find Genes Associated with Depression Under Stres
大规模基因组分析寻找与压力下抑郁症相关的基因
- 批准号:
8874303 - 财政年份:2013
- 资助金额:
$ 19.25万 - 项目类别:
Mobile Technology to Identify Behavorial Mechanisms Linking Genetic Variation and Depression
移动技术识别与遗传变异和抑郁症相关的行为机制
- 批准号:
10161829 - 财政年份:2013
- 资助金额:
$ 19.25万 - 项目类别:
Broad Scale Genomic Analysis to Find Genes Associated with Depression Under Stres
大规模基因组分析寻找与压力下抑郁症相关的基因
- 批准号:
8573528 - 财政年份:2013
- 资助金额:
$ 19.25万 - 项目类别:
Broad Scale Genomic Analysis to Find Genes Associated with Depression Under Stres
大规模基因组分析寻找与压力下抑郁症相关的基因
- 批准号:
9317292 - 财政年份:2013
- 资助金额:
$ 19.25万 - 项目类别:
Mobile Technology to Identify Behavorial Mechanisms Linking Genetic Variation and Depression
移动技术识别与遗传变异和抑郁症相关的行为机制
- 批准号:
10399597 - 财政年份:2013
- 资助金额:
$ 19.25万 - 项目类别:
Mobile Technology to Identify Behavorial Mechanisms Linking Genetic Variation and Depression
移动技术识别与遗传变异和抑郁症相关的行为机制
- 批准号:
9524194 - 财政年份:2013
- 资助金额:
$ 19.25万 - 项目类别:
Medical Internship as a Model to Find Gene x Stress Interactions in Depression
医学实习作为寻找抑郁症中基因与压力相互作用的模型
- 批准号:
8460930 - 财政年份:2011
- 资助金额:
$ 19.25万 - 项目类别:
Utilizing Medical Internship to Identify Genetic Variation Associated with Depres
利用医学实习来识别与抑郁症相关的基因变异
- 批准号:
8164789 - 财政年份:2011
- 资助金额:
$ 19.25万 - 项目类别:
Medical Internship as a Model to Find Gene x Stress Interactions in Depression
医学实习作为寻找抑郁症中基因与压力相互作用的模型
- 批准号:
8278523 - 财政年份:2011
- 资助金额:
$ 19.25万 - 项目类别:
Medical Internship as a Model to Find Gene x Stress Interactions in Depression
医学实习作为寻找抑郁症中基因与压力相互作用的模型
- 批准号:
8645757 - 财政年份:2011
- 资助金额:
$ 19.25万 - 项目类别:
相似海外基金
1/2 Large-scale, single-cell characterization of molecular and cellular networks of mood regulation circuitry in major depressive disorder
1/2 重度抑郁症情绪调节回路的分子和细胞网络的大规模单细胞表征
- 批准号:
10744931 - 财政年份:2023
- 资助金额:
$ 19.25万 - 项目类别:
A Feasibility Study of a Novel, Fully Remote Counseling and Sound Therapy Program for Hyperacusis
新型、完全远程咨询和听觉过敏声音治疗计划的可行性研究
- 批准号:
10651126 - 财政年份:2023
- 资助金额:
$ 19.25万 - 项目类别:
2/2 Large-scale, single-cell characterization of molecular and cellular networks of mood regulation circuitry in major depressive disorder
2/2 重度抑郁症情绪调节回路的分子和细胞网络的大规模单细胞表征
- 批准号:
10745412 - 财政年份:2023
- 资助金额:
$ 19.25万 - 项目类别:
Integrated, Individualized, and Intelligent Prescribing (I3P) Clinical Trial Network
一体化、个体化、智能处方(I3P)临床试验网络
- 批准号:
10822651 - 财政年份:2023
- 资助金额:
$ 19.25万 - 项目类别:
Impact of Medicaid Postpartum Coverage Extension and Mandated Postpartum Depression Screening on Care for Gestational Diabetes and Pregnancy-Induced Hypertension
医疗补助产后覆盖范围扩大和强制性产后抑郁症筛查对妊娠期糖尿病和妊娠高血压综合征护理的影响
- 批准号:
10749378 - 财政年份:2023
- 资助金额:
$ 19.25万 - 项目类别: