Energy Stress in Brain Tumor Initiating Stem Cells
脑肿瘤起始干细胞中的能量应激
基本信息
- 批准号:8785788
- 负责人:
- 金额:$ 34.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:5&apos-AMP-activated protein kinaseAcidsAerobicAffectAffinityAngiogenesis InhibitorsAnimalsAreaAvastinBiopsyBloodBlood - brain barrier anatomyBlood GlucoseBlood VesselsBrainBrain DiseasesBrain GlioblastomaBrain NeoplasmsBrain StemCarbonCell DeathCell LineageCellsClinicalCuesDNADataDependenceDiet ModificationDiet therapyEnergy SupplyEnvironmentEpilepsyFDA approvedFailureFoundationsGlioblastomaGliomaGlucoseGlucose TransporterHumanHypoxiaInvadedKetone BodiesLinkMalignant - descriptorMalignant NeoplasmsMediatingMetabolicMetabolic stressMetabolismModelingModificationMolecularNatureNecrosisNeuronsNeurosciencesNormal tissue morphologyNutrientNutritionalOrganOxygenPatientsPerfusionPharmaceutical PreparationsPhenotypePopulationPrevalencePrimary Brain NeoplasmsProcessProtein IsoformsRadiationRadiation therapyRegulationReportingResistanceRoleSLC2A1 geneSeriesSolid NeoplasmSourceStem cellsStressTherapeuticTissuesTumor AngiogenesisVariantVascular blood supplyWarburg Effectaerobic glycolysisaptamerbasebevacizumabcell killingchemotherapyconventional therapydeprivationembryonic stem cellextracellularglucose uptakeimprovedketogenic dietneoplasticneoplastic cellnovelpalliationpreimplantationpreventpublic health relevanceregional differenceresponseself-renewalsmall hairpin RNAsperm cellstemtherapeutic targettumortumor growthtumor metabolismtumor microenvironment
项目摘要
DESCRIPTION (provided by applicant): The human brain represents one of the most metabolically active organs with a highly efficient ability to extract glucose as the primary currency for energy and carbon source. In particular, neurons are distinguished in their ability to
preferentially absorb glucose from a nutrient-restricted environment through the expression of high affinity glucose transporters. The most prevalent primary brain tumor, glioblastoma, ranks among the most lethal of human cancers. Like the normal brain, glioblastomas contain cellular hierarchies with self-renewing, multi-lineage cells at the apex. These brain tumor initiating cells
display therapeutic resistance, promote tumor angiogenesis, and invade into normal tissues providing rationale to model their regulation and develop targeting strategies. We recently demonstrated that brain tumor initiating cells display a marked ability to survive the reduced nutrient levels found in the neoplastic brain through the cooption of the neuronal glucose transporter, GLUT3. In contrast, non-stem cell-like tumor cells underwent cell death with nutrient restriction with a cellular plasticity towards a stem cell-like state in surviving cells. Collectivly, these studies identify a novel molecular mechanism associated with the tumor cellular hierarchy that could provide a node of fragility as targeting GLUT3 expression reduced brain tumor initiating cell self-renewal and tumor growth. Like all cancers, glioblastomas display the Warburg effect, a preferential utilization of aerobic glycolysis for energy supplies. This aerobic glycolyss frees the cells from oxygen requirements and provides a steady supply of anabolic material yet is highly glucose inefficient and requires a steady supply of glucose, suggesting a potential therapeutic target. Based on this background, we hypothesize that preferential glucose uptake shields brain tumor initiating cells from extracellular energy stress and provides an ability to these cells to occupy a diverse set of niches with different metabolic limitations. The anti-angiogenic bevacizumab has shown promise in the initial response of tumors to therapy but has failed to extend survival. Studies have suggested that angiogenic inhibitor resistance is associated with impaired vascular function and metabolic shifts that may enrich for tumor initiating cells. To investigate these potential links between cellular metabolism and the tumor hierarchy, we will dissect the interplay between brain tumor initiating cells and the tumor microenvironment. In the first aim, we will determine the role of the stem cell metabolic responses in stress resistance. In the second aim, we will interrogate the role of glucose uptake in different tumor microenvironments enriched in tumor initiating cells through the use of regional biopsies from human patients and regionally specific Glut3 modification in animal studies. Finally, we will investigate the potential synthetic lethality of targeting GLUT3 with bevacizumab or ketogenic diet therapy. We will employ a series of models derived from human glioblastomas and epilepsy tissues to lay the foundation for advanced modeling of this lethal brain disease.
描述(由申请人提供):人脑代表着最具代谢活性的器官之一,具有高效的能力,可以提取葡萄糖作为能量和碳源的主要货币。特别是,神经元在其能力方面具有区分
优先通过高亲和葡萄糖转运蛋白的表达从营养限制的环境中吸收葡萄糖。最普遍的原发性脑肿瘤,胶质母细胞瘤是最致命的人类癌症之一。像正常的大脑一样,胶质母细胞瘤包含细胞层次结构,并在顶点处具有自我更新,多型细胞。这些脑肿瘤引发细胞
表现出治疗性耐药性,促进肿瘤血管生成,并入侵正常组织,提供基本原理来建模其调节并制定靶向策略。我们最近证明,通过神经元葡萄糖转运蛋白Glut3的粪便,脑肿瘤引发的细胞具有明显的能力,可在肿瘤大脑中生存降低的营养水平。相反,非茎细胞样肿瘤细胞在养分限制中经历了细胞死亡,并在存活细胞中对干细胞状状态具有细胞可塑性。集体研究,这些研究确定了一种与肿瘤细胞层次结构相关的新型分子机制,该机制可以提供脆弱的节点,因为靶向GLUT3表达会减少脑肿瘤,从而启动细胞自我更新和肿瘤生长。像所有癌症一样,胶质母细胞瘤显示出沃堡效应,这是对能量供应的有氧糖糖溶解的优先利用。这种有氧甘油可以使细胞免于氧气需求,并提供合成代谢材料的稳定供应,但高度葡萄糖效率高,需要稳定的葡萄糖供应,这表明潜在的治疗靶标。基于这种背景,我们假设优先的葡萄糖摄取屏蔽了脑肿瘤从细胞外能量应力引发细胞,并为这些细胞提供了具有不同代谢限制的各种壁ni的能力。抗血管生成贝伐单抗在肿瘤对治疗的初始反应中表现出了希望,但未能延长生存率。研究表明,血管生成抑制剂的耐药性与可能富含肿瘤启动细胞的血管功能和代谢转移有关。为了研究细胞代谢与肿瘤层次结构之间的这些潜在联系,我们将剖析脑肿瘤启动细胞与肿瘤微环境之间的相互作用。在第一个目标中,我们将确定干细胞代谢反应在应激抗性中的作用。在第二个目标中,我们将通过使用人类患者的区域活检和动物研究中的区域特定的GLUT3修饰来审问葡萄糖吸收在不同肿瘤微环境中的作用。最后,我们将研究用贝伐单抗或生酮饮食疗法靶向GLUT3的潜在合成致死性。我们将采用一系列源自人胶质母细胞瘤和癫痫组织的模型,为这种致命的脑疾病的高级建模奠定了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEREMY N RICH其他文献
JEREMY N RICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEREMY N RICH', 18)}}的其他基金
Dynamic Complexity of Brain Tumor Stem Cells (R35CA197718)
脑肿瘤干细胞的动态复杂性 (R35CA197718)
- 批准号:
10419906 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
Dual Targeting of Brain Tumor Initiating Cells through Inhibition of BMI1 and EZH2
通过抑制 BMI1 和 EZH2 双重靶向脑肿瘤起始细胞
- 批准号:
9981829 - 财政年份:2017
- 资助金额:
$ 34.67万 - 项目类别:
Dual Targeting of Brain Tumor Initiating Cells through Inhibition of BMI1 and EZH2 (R01NS103434)
通过抑制 BMI1 和 EZH2 双重靶向脑肿瘤起始细胞 (R01NS103434)
- 批准号:
10450285 - 财政年份:2017
- 资助金额:
$ 34.67万 - 项目类别:
Dual Targeting of Brain Tumor Initiating Cells through Inhibition of BMI1 and EZH2
通过抑制 BMI1 和 EZH2 双重靶向脑肿瘤起始细胞
- 批准号:
9398480 - 财政年份:2017
- 资助金额:
$ 34.67万 - 项目类别:
Dual Targeting of Brain Tumor Initiating Cells through Inhibition of BMI1 and EZH2 (R01NS103434)
通过抑制 BMI1 和 EZH2 双重靶向脑肿瘤起始细胞 (R01NS103434)
- 批准号:
10201765 - 财政年份:2017
- 资助金额:
$ 34.67万 - 项目类别:
Instructive Cues in Glioblastoma Hierarchies
胶质母细胞瘤层次结构中的指导性线索
- 批准号:
8786649 - 财政年份:2014
- 资助金额:
$ 34.67万 - 项目类别:
相似国自然基金
AMPKr2促进脂肪细胞分化的机理研究
- 批准号:81800774
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
AMPK信号通路调控多巴胺能神经元的活化介导抑郁症的发生
- 批准号:81871068
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
冷冻电镜技术解析AMP激活的蛋白激酶结构及构象变化
- 批准号:31860244
- 批准年份:2018
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
AMPK调控血管周围白色脂肪米色化减轻动脉粥样硬化作用机制研究
- 批准号:81703511
- 批准年份:2017
- 资助金额:20.1 万元
- 项目类别:青年科学基金项目
基于肠道菌群探讨吴茱萸碱对肾性高血压大鼠VECs功能的影响及机制
- 批准号:81660048
- 批准年份:2016
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
相似海外基金
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Glyoxalase 1 and its Role in Metabolic Syndrome
乙二醛酶 1 及其在代谢综合征中的作用
- 批准号:
10656054 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
A novel pathway controls liver injury in NASH
控制 NASH 肝损伤的新途径
- 批准号:
10500991 - 财政年份:2022
- 资助金额:
$ 34.67万 - 项目类别:
Deciphering the Molecular Mechanisms by which PKA inhibits mTORC1
破译 PKA 抑制 mTORC1 的分子机制
- 批准号:
10365712 - 财政年份:2022
- 资助金额:
$ 34.67万 - 项目类别: