Energy Stress in Brain Tumor Initiating Stem Cells
脑肿瘤起始干细胞中的能量应激
基本信息
- 批准号:8785788
- 负责人:
- 金额:$ 34.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:5&apos-AMP-activated protein kinaseAcidsAerobicAffectAffinityAngiogenesis InhibitorsAnimalsAreaAvastinBiopsyBloodBlood - brain barrier anatomyBlood GlucoseBlood VesselsBrainBrain DiseasesBrain GlioblastomaBrain NeoplasmsBrain StemCarbonCell DeathCell LineageCellsClinicalCuesDNADataDependenceDiet ModificationDiet therapyEnergy SupplyEnvironmentEpilepsyFDA approvedFailureFoundationsGlioblastomaGliomaGlucoseGlucose TransporterHumanHypoxiaInvadedKetone BodiesLinkMalignant - descriptorMalignant NeoplasmsMediatingMetabolicMetabolic stressMetabolismModelingModificationMolecularNatureNecrosisNeuronsNeurosciencesNormal tissue morphologyNutrientNutritionalOrganOxygenPatientsPerfusionPharmaceutical PreparationsPhenotypePopulationPrevalencePrimary Brain NeoplasmsProcessProtein IsoformsRadiationRadiation therapyRegulationReportingResistanceRoleSLC2A1 geneSeriesSolid NeoplasmSourceStem cellsStressTherapeuticTissuesTumor AngiogenesisVariantVascular blood supplyWarburg Effectaerobic glycolysisaptamerbasebevacizumabcell killingchemotherapyconventional therapydeprivationembryonic stem cellextracellularglucose uptakeimprovedketogenic dietneoplasticneoplastic cellnovelpalliationpreimplantationpreventpublic health relevanceregional differenceresponseself-renewalsmall hairpin RNAsperm cellstemtherapeutic targettumortumor growthtumor metabolismtumor microenvironment
项目摘要
DESCRIPTION (provided by applicant): The human brain represents one of the most metabolically active organs with a highly efficient ability to extract glucose as the primary currency for energy and carbon source. In particular, neurons are distinguished in their ability to
preferentially absorb glucose from a nutrient-restricted environment through the expression of high affinity glucose transporters. The most prevalent primary brain tumor, glioblastoma, ranks among the most lethal of human cancers. Like the normal brain, glioblastomas contain cellular hierarchies with self-renewing, multi-lineage cells at the apex. These brain tumor initiating cells
display therapeutic resistance, promote tumor angiogenesis, and invade into normal tissues providing rationale to model their regulation and develop targeting strategies. We recently demonstrated that brain tumor initiating cells display a marked ability to survive the reduced nutrient levels found in the neoplastic brain through the cooption of the neuronal glucose transporter, GLUT3. In contrast, non-stem cell-like tumor cells underwent cell death with nutrient restriction with a cellular plasticity towards a stem cell-like state in surviving cells. Collectivly, these studies identify a novel molecular mechanism associated with the tumor cellular hierarchy that could provide a node of fragility as targeting GLUT3 expression reduced brain tumor initiating cell self-renewal and tumor growth. Like all cancers, glioblastomas display the Warburg effect, a preferential utilization of aerobic glycolysis for energy supplies. This aerobic glycolyss frees the cells from oxygen requirements and provides a steady supply of anabolic material yet is highly glucose inefficient and requires a steady supply of glucose, suggesting a potential therapeutic target. Based on this background, we hypothesize that preferential glucose uptake shields brain tumor initiating cells from extracellular energy stress and provides an ability to these cells to occupy a diverse set of niches with different metabolic limitations. The anti-angiogenic bevacizumab has shown promise in the initial response of tumors to therapy but has failed to extend survival. Studies have suggested that angiogenic inhibitor resistance is associated with impaired vascular function and metabolic shifts that may enrich for tumor initiating cells. To investigate these potential links between cellular metabolism and the tumor hierarchy, we will dissect the interplay between brain tumor initiating cells and the tumor microenvironment. In the first aim, we will determine the role of the stem cell metabolic responses in stress resistance. In the second aim, we will interrogate the role of glucose uptake in different tumor microenvironments enriched in tumor initiating cells through the use of regional biopsies from human patients and regionally specific Glut3 modification in animal studies. Finally, we will investigate the potential synthetic lethality of targeting GLUT3 with bevacizumab or ketogenic diet therapy. We will employ a series of models derived from human glioblastomas and epilepsy tissues to lay the foundation for advanced modeling of this lethal brain disease.
描述(由申请人提供):人脑是代谢最活跃的器官之一,具有高效提取葡萄糖作为能量和碳源主要货币的能力。特别是,神经元的独特之处在于它们的能力:
通过表达高亲和力葡萄糖转运蛋白优先从营养受限的环境中吸收葡萄糖。最常见的原发性脑肿瘤是胶质母细胞瘤,是最致命的人类癌症之一。与正常大脑一样,胶质母细胞瘤包含细胞层次结构,其顶端具有自我更新的多谱系细胞。这些脑肿瘤起始细胞
显示治疗耐药性、促进肿瘤血管生成并侵入正常组织,为模拟其调节和制定靶向策略提供了理论基础。我们最近证明,通过神经元葡萄糖转运蛋白 GLUT3 的共同选择,脑肿瘤起始细胞表现出显着的生存能力,能够在肿瘤脑中发现的营养水平降低的情况下生存。相比之下,非干细胞样肿瘤细胞在营养限制的情况下经历细胞死亡,并且存活细胞具有向干细胞样状态的细胞可塑性。总的来说,这些研究确定了一种与肿瘤细胞层次结构相关的新分子机制,该机制可以提供一个脆弱节点,因为靶向 GLUT3 表达会减少脑肿瘤启动细胞的自我更新和肿瘤生长。与所有癌症一样,胶质母细胞瘤表现出瓦伯格效应,即优先利用有氧糖酵解来提供能量。这种有氧糖酵解使细胞摆脱对氧气的需求,并提供稳定的合成代谢物质供应,但葡萄糖效率很高,需要稳定的葡萄糖供应,这表明了潜在的治疗靶点。基于这一背景,我们假设优先摄取葡萄糖可以保护脑肿瘤起始细胞免受细胞外能量应激,并为这些细胞提供占据具有不同代谢限制的多种生态位的能力。抗血管生成贝伐珠单抗在肿瘤治疗的初始反应中显示出希望,但未能延长生存期。研究表明,血管生成抑制剂耐药性与血管功能受损和代谢变化有关,这些变化可能会丰富肿瘤起始细胞。为了研究细胞代谢和肿瘤层次之间的潜在联系,我们将剖析脑肿瘤起始细胞和肿瘤微环境之间的相互作用。第一个目标是确定干细胞代谢反应在应激抵抗中的作用。在第二个目标中,我们将通过使用人类患者的区域活检和动物研究中的区域特异性 Glut3 修饰来探究葡萄糖摄取在富含肿瘤起始细胞的不同肿瘤微环境中的作用。最后,我们将研究贝伐珠单抗或生酮饮食疗法靶向 GLUT3 的潜在合成致死率。我们将采用一系列源自人类胶质母细胞瘤和癫痫组织的模型,为这种致命性脑部疾病的高级建模奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEREMY N RICH其他文献
JEREMY N RICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEREMY N RICH', 18)}}的其他基金
Dynamic Complexity of Brain Tumor Stem Cells (R35CA197718)
脑肿瘤干细胞的动态复杂性 (R35CA197718)
- 批准号:
10419906 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
Dual Targeting of Brain Tumor Initiating Cells through Inhibition of BMI1 and EZH2
通过抑制 BMI1 和 EZH2 双重靶向脑肿瘤起始细胞
- 批准号:
9981829 - 财政年份:2017
- 资助金额:
$ 34.67万 - 项目类别:
Dual Targeting of Brain Tumor Initiating Cells through Inhibition of BMI1 and EZH2 (R01NS103434)
通过抑制 BMI1 和 EZH2 双重靶向脑肿瘤起始细胞 (R01NS103434)
- 批准号:
10450285 - 财政年份:2017
- 资助金额:
$ 34.67万 - 项目类别:
Dual Targeting of Brain Tumor Initiating Cells through Inhibition of BMI1 and EZH2
通过抑制 BMI1 和 EZH2 双重靶向脑肿瘤起始细胞
- 批准号:
9398480 - 财政年份:2017
- 资助金额:
$ 34.67万 - 项目类别:
Dual Targeting of Brain Tumor Initiating Cells through Inhibition of BMI1 and EZH2 (R01NS103434)
通过抑制 BMI1 和 EZH2 双重靶向脑肿瘤起始细胞 (R01NS103434)
- 批准号:
10201765 - 财政年份:2017
- 资助金额:
$ 34.67万 - 项目类别:
Instructive Cues in Glioblastoma Hierarchies
胶质母细胞瘤层次结构中的指导性线索
- 批准号:
8786649 - 财政年份:2014
- 资助金额:
$ 34.67万 - 项目类别:
相似国自然基金
AMPK通过调控Smurf1的SUMO化抑制创伤性异位骨化的研究
- 批准号:31900852
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
血管微环境中内皮细胞AMPK抑制心肌纤维化的功能与机制研究
- 批准号:81800273
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于AMPK-FXR-BSEP介导的齐墩果酸所致胆汁淤积性肝损伤作用机制研究
- 批准号:81760678
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
基于AMPK信号通路研究菝葜黄酮调控脂类代谢分子机制
- 批准号:81760157
- 批准年份:2017
- 资助金额:32.0 万元
- 项目类别:地区科学基金项目
PRKAG2基因自发新突变K485E引起心脏电生理异常的机制研究
- 批准号:81400259
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Glyoxalase 1 and its Role in Metabolic Syndrome
乙二醛酶 1 及其在代谢综合征中的作用
- 批准号:
10656054 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
A novel pathway controls liver injury in NASH
控制 NASH 肝损伤的新途径
- 批准号:
10500991 - 财政年份:2022
- 资助金额:
$ 34.67万 - 项目类别:
Deciphering the Molecular Mechanisms by which PKA inhibits mTORC1
破译 PKA 抑制 mTORC1 的分子机制
- 批准号:
10365712 - 财政年份:2022
- 资助金额:
$ 34.67万 - 项目类别: