Novel Models to Predict Energy Expenditure and Physical Activity in Preschoolers
预测学龄前儿童能量消耗和身体活动的新模型
基本信息
- 批准号:8468004
- 负责人:
- 金额:$ 28.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsBehaviorCalibrationCalorimetryCharacteristicsChildClassificationComplexComputer softwareDataDoseEffectiveness of InterventionsEnergy MetabolismHealthHeart RateIndirect CalorimetryLabelLightMachine LearningMeasuresMethodsModelingMonitorNatureNursery SchoolsOutcomePatternPhysical activityPopulationPosturePreschool ChildPrevalenceResearchSamplingSeriesSleepStructureTechniquesTechnologyTimeTime Series AnalysisValidationWateragedawakebasecost effectiveheart rate variabilityimprovedmathematical modelminiaturizemodel developmentnovelnovel strategiesobesity in childrenphase 1 studyphase 2 studyphysical conditioningpublic health relevanceresponsesedentary
项目摘要
DESCRIPTION (provided by applicant): Novel approaches to assess physical activity (PA) and predict energy expenditure (EE) are essential for quantifying the characteristically sporadic PA patterns and variable rates of EE of preschool-aged children. Because of methodological limitations, there is a paucity of comprehensive quantitative data on the habitual PA patterns and normative rates of EE in preschoolers. Accelerometers or miniaturized heart rate (HR) monitors are used to assess PA and predict EE, however, the mathematical modeling of accelerometer counts (AC) and HR has been limited to regression models that do not take into account the interdependence of the data and do not exploit all the information in the raw data. In this proposal, we will apply advanced technology (fast- response room calorimetry, doubly labeled water (DLW), accelerometers and miniaturized HR monitors) and sophisticated mathematical modeling techniques to develop and validate prediction models that capture the dynamic nature of PA and EE in preschool-aged children. Cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models will be developed in 88 preschool-aged children using 12-h room respiration calorimetry as the criterion method and validated in an independent sample (n=50) against12-h room respiration calorimetry and the 7-d DLW method. Specific Aims: 1. For assessment of PA using unaxial and triaxial accelerometry (ActiGraph GT1M and GT3X), develop CSTS and MARS models for prediction of minute-to-minute activity energy expenditure (AEE) based on subject characteristics and the functional relationship between AC and AEE, measured by 12-h room respiration calorimetry in 88 preschool-aged children. 2. For classification of sedentary, light, moderate and vigorous levels of PA and awake/sleep periods, develop, evaluate, and compare algorithms using statistical and machine learning methods. 3. For prediction of EE using accelerometry and HR monitoring (Actiheart), develop CSTS and MARS models for prediction of minute-by-minute EE and hence TEE based on subject characteristics and the relationship between AC+HR and EE as measured by 12-h calorimetry in the same 88 preschoolers. 4. Validate the classification algorithms for PA levels and awake/sleep periods developed in Aim 2. 5. Validate the use of uniaxial and triaxial accelerometers for the prediction of AEE based on AC and subject characteristics, against 12-h calorimetry and the DLW method in an independent sample of 50 preschoolers. 6. Validate the CSTS and MARS models for the prediction of minute-by-minute EE and hence TEE, AEE, awake EE and sleep EE from AC and HR and subject characteristics against 12-h calorimetry and the DLW method in the same independent sample of 50 preschoolers.
描述(由申请人提供):评估体力活动 (PA) 和预测能量消耗 (EE) 的新方法对于量化学龄前儿童特有的零星 PA 模式和 EE 的可变率至关重要。由于方法学的局限性,关于学龄前儿童习惯性 PA 模式和 EE 规范率的全面定量数据很少。加速度计或小型心率 (HR) 监测器用于评估 PA 和预测 EE,但是,加速度计计数 (AC) 和 HR 的数学建模仅限于回归模型,这些模型没有考虑数据的相互依赖性,并且不利用原始数据中的所有信息。在本提案中,我们将应用先进技术(快速响应室内量热法、双标记水 (DLW)、加速度计和小型心率监测仪)和复杂的数学建模技术来开发和验证预测模型,以捕获 PA 和 EE 的动态性质。学龄前儿童。将使用 12 小时室内呼吸量热法作为标准方法,在 88 名学龄前儿童中开发横截面时间序列 (CSTS) 和多元自适应回归样条 (MARS) 模型,并在独立样本 (n=50) 中针对 12- h 室内呼吸量热法和 7 天 DLW 方法。具体目标: 1. 使用单轴和三轴加速度计(ActiGraph GT1M 和 GT3X)评估 PA,开发 CSTS 和 MARS 模型,根据受试者特征和 AC 之间的函数关系预测每分钟的活动能量消耗 (AEE)和 AEE,通过 88 名学龄前儿童的 12 小时室内呼吸量热法进行测量。 2. 对于久坐、轻度、中度和剧烈的 PA 水平以及清醒/睡眠时间的分类,使用统计和机器学习方法开发、评估和比较算法。 3. 为了使用加速度测量和 HR 监测 (Actiheart) 预测 EE,开发 CSTS 和 MARS 模型,用于预测每分钟 EE,从而根据受试者特征以及通过 12- 测量的 AC+HR 和 EE 之间的关系来预测 TEE h 热量测定同样针对 88 名学龄前儿童。 4. 验证目标 2 中开发的 PA 水平和清醒/睡眠周期的分类算法。 5. 根据 12 小时量热法和 DLW 方法,验证使用单轴和三轴加速度计根据 AC 和受试者特征预测 AEE在 50 名学龄前儿童的独立样本中。 6. 验证 CSTS 和 MARS 模型,以预测每分钟 EE,从而根据 AC 和 HR 以及同一独立样本中的 12 小时量热法和 DLW 方法预测 TEE、AEE、清醒 EE 和睡眠 EE 以及受试者特征50 名学龄前儿童。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cross-sectional time series and multivariate adaptive regression splines models using accelerometry and heart rate predict energy expenditure of preschoolers.
使用加速度测量和心率的横截面时间序列和多元自适应回归样条模型预测学龄前儿童的能量消耗。
- DOI:10.3945/jn.112.168542
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Zakeri,IssaF;Adolph,AnneL;Puyau,MauriceR;Vohra,FirozA;Butte,NancyF
- 通讯作者:Butte,NancyF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NANCY F. BUTTE其他文献
NANCY F. BUTTE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NANCY F. BUTTE', 18)}}的其他基金
Novel Models to Predict Energy Expenditure and Physical Activity in Preschoolers
预测学龄前儿童能量消耗和身体活动的新模型
- 批准号:
8278675 - 财政年份:2010
- 资助金额:
$ 28.3万 - 项目类别:
Novel Models to Predict Energy Expenditure and Physical Activity in Preschoolers
预测学龄前儿童能量消耗和身体活动的新模型
- 批准号:
8061616 - 财政年份:2010
- 资助金额:
$ 28.3万 - 项目类别:
Novel Models to Predict Energy Expenditure and Physical Activity in Preschoolers
预测学龄前儿童能量消耗和身体活动的新模型
- 批准号:
7765707 - 财政年份:2010
- 资助金额:
$ 28.3万 - 项目类别:
Obesity and Diabetes Familial Risk in Hispanic Children
西班牙裔儿童的肥胖和糖尿病家族风险
- 批准号:
8241965 - 财政年份:2009
- 资助金额:
$ 28.3万 - 项目类别:
Obesity and Diabetes Familial Risk in Hispanic Children
西班牙裔儿童的肥胖和糖尿病家族风险
- 批准号:
7652915 - 财政年份:2009
- 资助金额:
$ 28.3万 - 项目类别:
Obesity and Diabetes Familial Risk in Hispanic Children
西班牙裔儿童的肥胖和糖尿病家族风险
- 批准号:
7798013 - 财政年份:2009
- 资助金额:
$ 28.3万 - 项目类别:
Obesity and Diabetes Familial Risk in Hispanic Children
西班牙裔儿童的肥胖和糖尿病家族风险
- 批准号:
8033661 - 财政年份:2009
- 资助金额:
$ 28.3万 - 项目类别:
Prediction of Energy Expenditure/Physical Activity in Children and Adolescents
儿童和青少年能量消耗/身体活动的预测
- 批准号:
7274280 - 财政年份:2005
- 资助金额:
$ 28.3万 - 项目类别:
Prediction of Energy Expenditure/Physical Activity
能量消耗/体力活动的预测
- 批准号:
7012468 - 财政年份:2005
- 资助金额:
$ 28.3万 - 项目类别:
TREATMENT OF NONALCOHOLIC FATTY LIVER DISEASE WITH VITAMIN E SUPPLEMENTATION
补充维生素 E 治疗非酒精性脂肪肝
- 批准号:
7374991 - 财政年份:2005
- 资助金额:
$ 28.3万 - 项目类别:
相似国自然基金
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
人工智能算法嵌入街头官僚决策的行为效应及其认知触发机制研究
- 批准号:72304110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习和粒子群优化算法的疲劳驾驶行为识别研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
- 批准号:
10723819 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:
10655968 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
NeuroMAP Phase II - Data Management and Statistics Core
NeuroMAP 第二阶段 - 数据管理和统计核心
- 批准号:
10711138 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Resilient Emotion Regulation Development in a South African Birth Cohort
南非出生队列的弹性情绪调节发展
- 批准号:
10656016 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别: