The roles of lipid metabolism in the maintenance of hematopoietic stem cells

脂质代谢在造血干细胞维持中的作用

基本信息

  • 批准号:
    8481961
  • 负责人:
  • 金额:
    $ 29.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-04-01 至 2018-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Hematopoietic stem cells are the source of all hematopoietic cells, and replenish the hematopoietic compartment as required throughout organism lifespan. Since alterations in the equilibrium of this compartment greatly impact stem cell maintenance, the molecular mechanisms regulating the cell fate decisions of stem cells hold great promise for clinical applications. Studies of genetically-engineered mouse models suggest that metabolic cues contribute to the governance of these cells' self-renewal capacity. To date, however, little is known regarding the role of lipid metabolism in stem cell homeostasis. To better understand the key metabolic pathways involved in stem cell fate and maintenance, we propose the following Specific Aims: 1. To investigate the effects of inactivation of PPAR-fatty acid oxidation in stem cells; We have previously shown that stem cells exhibit higher Ppard expression and fatty acid oxidation than committed progenitor cells, and have hypothesized that lipid metabolism plays a role in their repopulation capacity. In accordance with this premise, we have also found that inhibition of fatty acid oxidation in vitro leads to a reduction of long-term culture-initiating cell capacity. Furthermore, Ppard-ablation leads to reduction of fatty acid oxidation in the hematopoietic stem cell compartment. The current proposal aims to elucidate the effect of genetic loss of Ppard in vivo on the reconstitution ability of stem cells in a transplantation setting. Stem cell division assays with Ppard knockout models will allow us to test whether Ppard-ablation leads to increased commitment of stem cells during their division. 2. To enable long-term engraftment with minimal donor cells by the activation of PPAR signaling; we will employ different activators of PPAR¿ at low doses in vivo to observe their effects on the long-term maintenance of murine stem cells from Ppard wild-type and knockout mice. This will provide a definitive proof, in a PPAR¿-dependent manner, of the potential benefit of PPAR¿ activators in the stem cell compartment. We will then determine, through the use of xenograft mouse models transplanted with human bone marrow cells, whether pharmacological activation of PPAR signaling induces a transplanted minimum number of human hematopoietic stem cells to maximize their long-term repopulation capacity in vivo. 3. To identify cell fate determinants that maintain stem cell-ness through division balance control; in stark contrast to what is known about symmetric and asymmetric division of normal cells in invertebrates, it has been extremely difficult to image the division pattern of most purified stem cell compartments in vertebrates. We therefore propose to generate knock-in mouse lines for real-time imaging of stem cell divisions and to study the intrinsic and extrinsic signals regulating stem cell decision. Combined with the data from our whole transcriptome analysis by RNA-seq in the purified stem cell compartment, the results from these mouse models will lead to a deeper understanding of the cell fate determinants of stem cells. These proposed studies will identify a novel metabolic switch for the cell fate decisions of stem cells, and in turn open new therapeutic avenues for the manipulation of hematopoietic stem cell function, and possibly the function of leukemia stem cells. This work will be conducted with the support of the following experts; Drs. Michael A. Brownlee (Metabolism), Chih-Hao Lee (Metabolism), David E. Avigan (Hematology/Oncology), Julie Teruya-Feldstein (Hemato- pathology), Toshio Suda (Stem Cells), Jan Vijg (Genetics), and Winfried Edelman (Gene Targeting). Importantly, Dr. Paul S. Frenette (Stem Cell niche) is closely supporting our research program along with Dr. Arthur Skoultchi (Hematology).
描述(由申请人提供):造血干细胞是所有造血细胞的来源,并在整个生物体生命周期中根据需要补充造血室,由于造血室平衡的改变极大地影响干细胞的维持,因此调节细胞命运的分子机制。基因工程小鼠模型的研究表明,干细胞的决定对临床应用具有很大的前景,但迄今为止,代谢信号对这些细胞的自我更新能力的调节作用还很小。脂质代谢在干细胞稳态中的作用已为人所知。为了更好地了解干细胞命运和维持中涉及的关键代谢途径,我们提出以下具体目标: 1. 研究 PPAR-脂肪酸氧化失活对干细胞的影响。干细胞;我们之前已经表明,干细胞比定向祖细胞表现出更高的 Ppard 表达和脂肪酸氧化,并利用脂质代谢在其增殖能力中发挥作用。还发现体外抑制脂肪酸氧化会导致长期培养起始细胞能力降低。此外,Ppard 消融会导致造血干细胞室中脂肪酸氧化减少。当前的提议旨在阐明。体内 Ppard 基因缺失对移植环境中干细胞重建能力的影响 使用 Ppard 敲除模型进行干细胞分裂测定将使我们能够测试是否如此。 Ppard 消融导致干细胞在分裂过程中的承诺增加 2. 为了通过激活 PPAR 信号传导实现最少供体细胞的长期植入;我们将使用不同的 PPAR 激活剂。在体内低剂量观察它们对 Ppard 野生型和基因敲除小鼠干细胞长期维持的影响,这将在 PPAR 中提供明确的证据。 - PPAR 潜在益处的依赖方式¿然后,我们将通过使用移植人骨髓细胞的异种移植小鼠模型来确定 PPAR 信号传导的药理学激活是否会诱导移植的最小数量的人造血干细胞,以最大限度地提高其长期增殖能力。 3. 为了识别通过分裂平衡控制维持干细胞特性的细胞命运决定因素,这与已知的无脊椎动物正常细胞的对称和不对称分裂形成鲜明对比。对脊椎动物中大多数纯化干细胞区室的分裂模式进行成像极其困难,因此我们建议生成用于干细胞分裂实时成像的敲入小鼠系,并结合干细胞决策来研究内在和外在调节信号。根据我们在纯化的干细胞室中通过 RNA-seq 进行的整个转录组分析的数据,这些小鼠模型的结果将有助于更深入地了解干细胞的细胞命运决定因素。干细胞命运决定细胞,进而为操纵造血干细胞功能以及可能的白血病干细胞功能开辟新的治疗途径。这项工作将在以下专家的支持下进行: Chih-Hao Lee(代谢)、David E. Avigan(血液学/肿瘤学)、Julie Teruya-Feldstein(血液病理学)、Toshio Suda(干细胞)细胞)、Jan Vijg(遗传学)和 Winfried Edelman(基因靶向)重要的是,Paul S. Frenette 博士(干细胞领域)与 Arthur Skoultchi 博士(血液学)密切支持我们的研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keisuke Ito其他文献

Keisuke Ito的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keisuke Ito', 18)}}的其他基金

Single cell approach to uncovering factors regulating HSC division symmetry in vivo
单细胞方法揭示体内调节 HSC 分裂对称性的因素
  • 批准号:
    9979865
  • 财政年份:
    2017
  • 资助金额:
    $ 29.06万
  • 项目类别:
Single cell approach to uncovering factors regulating HSC division symmetry in vivo
单细胞方法揭示体内调节 HSC 分裂对称性的因素
  • 批准号:
    9425824
  • 财政年份:
    2017
  • 资助金额:
    $ 29.06万
  • 项目类别:
Single cell approach to uncovering factors regulating HSC division symmetry in vivo
单细胞方法揭示体内调节 HSC 分裂对称性的因素
  • 批准号:
    10208868
  • 财政年份:
    2017
  • 资助金额:
    $ 29.06万
  • 项目类别:
Epigenetic regulation by microRNA of MDS pathogenesis
MicroRNA对MDS发病机制的表观遗传调控
  • 批准号:
    9857819
  • 财政年份:
    2014
  • 资助金额:
    $ 29.06万
  • 项目类别:
Epigenetic regulation by microRNA of MDS pathogenesis
MicroRNA对MDS发病机制的表观遗传调控
  • 批准号:
    9096068
  • 财政年份:
    2014
  • 资助金额:
    $ 29.06万
  • 项目类别:
Epigenetic regulation by microRNA of MDS pathogenesis
MicroRNA对MDS发病机制的表观遗传调控
  • 批准号:
    8611386
  • 财政年份:
    2014
  • 资助金额:
    $ 29.06万
  • 项目类别:
Epigenetic regulation by microRNA of MDS pathogenesis
MicroRNA对MDS发病机制的表观遗传调控
  • 批准号:
    9314542
  • 财政年份:
    2014
  • 资助金额:
    $ 29.06万
  • 项目类别:
Epigenetic regulation by microRNA of MDS pathogenesis
MicroRNA对MDS发病机制的表观遗传调控
  • 批准号:
    9135832
  • 财政年份:
    2014
  • 资助金额:
    $ 29.06万
  • 项目类别:
The roles of lipid metabolism in the maintenance of hematopoietic stem cells
脂质代谢在造血干细胞维持中的作用
  • 批准号:
    9857923
  • 财政年份:
    2013
  • 资助金额:
    $ 29.06万
  • 项目类别:
The roles of lipid metabolism in the maintenance of hematopoietic stem cells
脂质代谢在造血干细胞维持中的作用
  • 批准号:
    9906877
  • 财政年份:
    2013
  • 资助金额:
    $ 29.06万
  • 项目类别:

相似国自然基金

ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
  • 批准号:
    82370084
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
高糖水平通过JUN乙酰化修饰上调NCAPD3促进结直肠癌发生的分子机制
  • 批准号:
    82303250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
β-羟基丁酸介导NF-kB p65去乙酰化修饰在经腹功能性磁刺激治疗脊髓损伤后神经病理性疼痛中的机制研究
  • 批准号:
    82302862
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于ChREBP乙酰化介导脂肪酸代谢探讨“肝病及心”理论内涵及降脂消斑方干预研究
  • 批准号:
    82374192
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DEPDC5蛋白乙酰化修饰导致mTROC1的激活并促进骨肉瘤的恶性进展
  • 批准号:
    82360472
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Beta cell Notch activity in Type 2 Diabetes
2 型糖尿病中的 Beta 细胞 Notch 活性
  • 批准号:
    10592434
  • 财政年份:
    2022
  • 资助金额:
    $ 29.06万
  • 项目类别:
Dynamic virus-driven remodeling of ER-mitochondria contacts
内质网-线粒体接触的动态病毒驱动重塑
  • 批准号:
    10608035
  • 财政年份:
    2022
  • 资助金额:
    $ 29.06万
  • 项目类别:
Dynamic virus-driven remodeling of ER-mitochondria contacts
内质网-线粒体接触的动态病毒驱动重塑
  • 批准号:
    10707412
  • 财政年份:
    2022
  • 资助金额:
    $ 29.06万
  • 项目类别:
SIRTI and Adaptive Muscle Growth
SIRTI 和适应性肌肉生长
  • 批准号:
    9243930
  • 财政年份:
    2017
  • 资助金额:
    $ 29.06万
  • 项目类别:
Safety and Tolerability of the Nutritional Supplement, Nicotinamide Riboside, in Systolic Heart Failure
营养补充剂烟酰胺核苷治疗收缩性心力衰竭的安全性和耐受性
  • 批准号:
    9113264
  • 财政年份:
    2016
  • 资助金额:
    $ 29.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了