Dynamic virus-driven remodeling of ER-mitochondria contacts
内质网-线粒体接触的动态病毒驱动重塑
基本信息
- 批准号:10608035
- 负责人:
- 金额:$ 41.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylationActivities of Daily LivingAddressAreaBindingBioenergeticsBiogenesisBiological AssayBiological ProcessCell RespirationCell SurvivalCellsCoupledCrista ampullarisCryo-electron tomographyCuesCytomegalovirusCytomegalovirus InfectionsDaughterDepressed moodElectron MicroscopyElectron TransportEventHerpesviridaeHourHumanHybridsImageImmune responseIn SituInfectionInfluenzaInner mitochondrial membraneLaminsLigationLinkLipidsLysosomesMass Spectrum AnalysisMembraneMetabolicMetabolic DiseasesMetabolismMicroscopyMitochondriaModelingMolecularMolecular VirologyMorphogenesisNuclearOrganellesOutcomeOutputOxidative PhosphorylationOxygen ConsumptionPathologyPathway interactionsPeripheralPopulationProductionProteinsProteomicsRegulationReportingResearchResolutionRespirationRoleShapesSignal TransductionSiteStructureStructure-Activity RelationshipViralViral PathogenesisViral PhysiologyViral ProteinsVirionVirusVirus DiseasesWorkbetacoronavirusgenetic manipulationinterdisciplinary approachlight microscopylipidomicslive cell microscopymetabolomicsmitochondrial membraneperoxisomerecruitrelease of sequestered calcium ion into cytoplasmrespiratoryspatiotemporalvirology
项目摘要
Viruses have evolved elegant strategies to manipulate host cell machinery and rewire core cellular pathways to
facilitate productive infection, including enhancing metabolic output and maintaining cell viability. To accomplish
this, viruses exert an extensive network of dynamic molecular interactions with cellular organelles. As the
functions of organelles are intimately associated with the regulation of their composition, shape, and localization,
the control of organelle structure-function relationships is at the core of clarifying the outcome of an infection.
While many examples of virus-induced organelle remodeling have been described, very little is understood about
how organelle structures engender specific functions. Our lab has characterized a previously unrecognized
aspect of viral infection, which is that human viruses globally control organelle remodeling by dramatically
rewiring inter- and intra-organelle membrane contact sites (MCS). Using a hybrid quantitative proteomics and
super resolution microscopy approach, we demonstrated exquisite reorganization in MCS networks engaged by
a broad range of human viruses, including both ancient (herpesviruses) and rapidly adapting (influenza and beta-
coronavirus) viruses. We further discovered that infection with the ubiquitous herpesvirus human
cytomegalovirus (HCMV) triggers a new specialized MCS structure, mitochondria-ER encapsulations that we
termed MENC. We determined that HCMV infection drives predominantly fission at the mitochondrial periphery,
and that the fragmented mitochondria enter MENCs and retain their bioenergetic activity. How the infection
induces MENC formation and the function of this newly reported structure remain unknown. We propose that
MENCs provide a unifying explanation for the longstanding paradox of how certain viruses such as HCMV
increase mitochondrial bioenergetic output, despite inducing mitochondrial fragmentation. Our central hypothesis
is that HCMV remodels inter- and intra-organelle connections, generating MENCs, which act to protect and
stabilize the bioenergetic capacity of fragmented mitochondria. Using a multidisciplinary approach that combines
molecular virology with cutting-edge approaches in quantitative proteomics, live super resolution microscopy,
ultrastructural electron microscopy, metabolomics, and lipidomics, in Aim 1, we will define the mechanisms
underlying the formation and function of MENCs during HCMV infection. In Aim 2, we will establish what
signaling cues from HCMV-induced three-way contacts among the ER, mitochondria, and lysosome stimulate
peripheral mitochondria fission and elevate bioenergetic respiration. In Aim 3, we will characterize the viral
factors that coordinate ER-mitochondria MCS rewiring. Collectively, our study will link newly discovered aspects
of virus-orchestrated MCS networking to new two-way and three-way organelle structure-function relationships
that underlie fundamental cellular mechanisms, including mitochondrial bioenergetics and autophagic turnover.
In doing so, our study will open research areas in how viruses exploit the functional capacities of remodeled
organelles for infection, which have broad implications for viral pathogenesis and metabolic disorders.
病毒已经进化出优雅的策略来操纵宿主细胞机器并重新连接核心细胞通路
促进生产性感染,包括增强代谢输出和维持细胞活力。为了完成
因此,病毒与细胞器发挥了广泛的动态分子相互作用网络。作为
细胞器的功能与其组成、形状和定位的调节密切相关,
细胞器结构-功能关系的控制是阐明感染结果的核心。
虽然已经描述了许多病毒诱导的细胞器重塑的例子,但人们对它知之甚少。
细胞器结构如何产生特定功能。我们的实验室发现了一种以前未被识别的特征
病毒感染的一个方面,即人类病毒通过显着地控制细胞器重塑
重新布线细胞器间和细胞器内膜接触位点(MCS)。使用混合定量蛋白质组学和
超分辨率显微镜方法,我们展示了 MCS 网络的精致重组
多种人类病毒,包括古老的病毒(疱疹病毒)和快速适应的病毒(流感病毒和β-病毒)
冠状病毒)病毒。我们进一步发现,感染人类普遍存在的疱疹病毒
巨细胞病毒 (HCMV) 触发一种新的专门 MCS 结构,即线粒体-ER 封装,我们将其
称为 MENC。我们确定 HCMV 感染主要驱动线粒体外周的裂变,
碎片化的线粒体进入 MENC 并保留其生物能活性。怎么传染的
诱导 MENC 形成,但这种新报道的结构的功能仍然未知。我们建议
MENC 为某些病毒(如 HCMV)如何长期存在的悖论提供了统一的解释。
尽管诱导线粒体断裂,但仍增加线粒体生物能输出。我们的中心假设
HCMV 重塑细胞器间和细胞内连接,产生 MENC,其作用是保护和
稳定碎片线粒体的生物能能力。使用多学科方法结合
分子病毒学与定量蛋白质组学、实时超分辨率显微镜、
超微结构电子显微镜、代谢组学和脂质组学,在目标 1 中,我们将定义其机制
HCMV 感染期间 MENC 的形成和功能的基础。在目标 2 中,我们将确定什么
HCMV 诱导的 ER、线粒体和溶酶体之间三向接触的信号线索刺激
外周线粒体裂变并增强生物能呼吸。在目标 3 中,我们将描述病毒的特征
协调 ER 线粒体 MCS 重连的因素。总的来说,我们的研究将把新发现的方面联系起来
病毒编排的MCS网络到新的双向和三向细胞器结构-功能关系
这是基本细胞机制的基础,包括线粒体生物能学和自噬周转。
在此过程中,我们的研究将开辟病毒如何利用重塑的功能能力的研究领域。
感染的细胞器,对病毒发病机制和代谢紊乱具有广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ileana M. Cristea其他文献
Ileana M. Cristea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ileana M. Cristea', 18)}}的其他基金
Methods and Logic in Molecular Biology Training Program
分子生物学方法与逻辑培训计划
- 批准号:
10721701 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Dynamic virus-driven remodeling of ER-mitochondria contacts
内质网-线粒体接触的动态病毒驱动重塑
- 批准号:
10707412 - 财政年份:2022
- 资助金额:
$ 41.94万 - 项目类别:
Mechanisms mediating immune response upon sensing of nuclear viral DNA
感测核病毒 DNA 介导免疫反应的机制
- 批准号:
10266082 - 财政年份:2015
- 资助金额:
$ 41.94万 - 项目类别:
Mechanisms mediating immune response upon sensing of nuclear viral DNA
感测核病毒 DNA 介导免疫反应的机制
- 批准号:
9027921 - 财政年份:2015
- 资助金额:
$ 41.94万 - 项目类别:
Mechanisms mediating immune response upon sensing of nuclear viral DNA
感测核病毒 DNA 介导免疫反应的机制
- 批准号:
9973554 - 财政年份:2015
- 资助金额:
$ 41.94万 - 项目类别:
Mechanisms mediating immune response upon sensing of nuclear viral DNA
感测核病毒 DNA 介导免疫反应的机制
- 批准号:
10672215 - 财政年份:2015
- 资助金额:
$ 41.94万 - 项目类别:
Mechanisms mediating immune response upon sensing of nuclear viral DNA
感测核病毒 DNA 介导免疫反应的机制
- 批准号:
10456254 - 财政年份:2015
- 资助金额:
$ 41.94万 - 项目类别:
Host Factors Required for Dengue and Yellow Fever Virus Amplification
登革热和黄热病病毒扩增所需的宿主因素
- 批准号:
8522155 - 财政年份:2012
- 资助金额:
$ 41.94万 - 项目类别:
Host Factors Required for Dengue and Yellow Fever Virus Amplification
登革热和黄热病病毒扩增所需的宿主因素
- 批准号:
8391158 - 财政年份:2012
- 资助金额:
$ 41.94万 - 项目类别:
Proteomic Tools to Uncover the Role of Chromatin Remodeling in HIV-1 Infection
揭示染色质重塑在 HIV-1 感染中作用的蛋白质组学工具
- 批准号:
8117154 - 财政年份:2008
- 资助金额:
$ 41.94万 - 项目类别:
相似国自然基金
老年期痴呆患者基础性日常生活活动能力损害的认知神经心理学基础及测量优化
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于VR技术的养老机构老年人ADL康复训练和评估量化体系构建及应用研究
- 批准号:81902295
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Beta cell Notch activity in Type 2 Diabetes
2 型糖尿病中的 Beta 细胞 Notch 活性
- 批准号:
10592434 - 财政年份:2022
- 资助金额:
$ 41.94万 - 项目类别:
Dynamic virus-driven remodeling of ER-mitochondria contacts
内质网-线粒体接触的动态病毒驱动重塑
- 批准号:
10707412 - 财政年份:2022
- 资助金额:
$ 41.94万 - 项目类别: