Advancing MRI & MRS Technologies for Studying Human Brain Function and Energetics
推进核磁共振成像
基本信息
- 批准号:8827010
- 负责人:
- 金额:$ 46.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-26 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosine TriphosphateBiological Neural NetworksBrainBrain imagingBrain regionCerebrovascular CirculationCerebrumCharacteristicsClinicalComplementCortical ColumnDetectionDevelopmentDiffusion weighted imagingDimensionsEngineeringFunctional Magnetic Resonance ImagingFunctional disorderGenerationsGeometryGrantHeatingHumanHuman bodyImageImaging DeviceImaging TechniquesImaging technologyInstitutionInterdisciplinary StudyIntramural ResearchLeadMagnetic ResonanceMagnetic Resonance ImagingMagnetic Resonance SpectroscopyMapsMedicineMetabolicMinnesotaMonitorMonoclonal Antibody R24NeurosciencesNeurosciences ResearchNicotinamide adenine dinucleotideNoiseNuclearOrganOutcomeOxidation-ReductionOxygenOxygen ConsumptionParis, FrancePerformancePhotic StimulationPhysicsPhysiologyPilot ProjectsProcessReproducibilityResearchResearch Project GrantsResolutionRestRiskSafetyScienceSignal TransductionSolutionsStructureSystemTechniquesTechnologyTestingTissuesTranslational ResearchUnited States National Institutes of HealthUniversitiesVisual CortexWorkabsorptionbasebrain metabolismbrain researchclinical Diagnosiscost effectivedisease diagnosisimprovedin vivoinnovationinnovative technologiesinstrumentinterestmagnetic fieldnervous system disorderneural circuitneurochemistryneuroimagingnext generationnovelprototypepublic health relevanceradiofrequencyrelating to nervous systemresponsetransmission process
项目摘要
DESCRIPTION (provided by applicant): Magnetic resonance (MR) imaging (MRI) and in vivo MR spectroscopy (MRS) techniques have become indispensable tools for imaging brain structure, function, connectivity, neurochemistry and neuroenergetics, and for investigating neurological disorders. However, it remains a challenge to achieve superior MRI/MRS detection sensitivity, spatial and temporal imaging resolutions adequate for addressing fundamental and challenging neuroscience questions even with the most advanced technology. The prevailing paradigms for improving MRI/MRS performance largely invoke increasing the magnetic field strength, which may have reached practically achievable limits for human studies due to many technological and safety (i.e., high specific absorption rate (SAR)) concerns, and increasing the receiver channel count which is also ultimately limited due to noise characteristics of coils of decreasing size. To alleviate these major limitations, this R24 proposal relies on the interdisciplinary research efforts and expertise of leading experts across two institutions to pioneer an entirely innovative engineering solution that uses the ultra-high dielectric constant (uHDC) material incorporated with ultrahigh-field MRI/MRS techniques for synergistically increase signal-to-noise ratio and concurrently reduce RF power demand, and for achieving unprecedented improvements in spatial/temporal resolution over the current state-of-the-art MR technologies. We will develop and optimize prototypes of uHDC material for human brain studies using 7 Tesla (T) and 10.5T whole-body human scanners. Moreover, we will exploit and assess the new utility and capability of the innovative uHDC-MR technology for cutting-edge neuroscience research. One pilot study is the functional mapping of neural circuits and resting-state connectivity at the level of columns and cortical layers in the human visual cortex with ultrahigh spatial resolution 1H MRI at 7T, complemented with anatomical connectivity derived from diffusion weighted images for tractography. The other one is to combine the uHDC technique with newly developed in vivo 31P and 17O MRS techniques for noninvasively and reliably imaging the cerebral metabolic rates of oxygen consumption and ATP, cerebral blood flow, oxygen extraction fraction and nicotinamide adenine dinucleotide (NAD) redox state in the human brain at resting and activated states. The proposed research will shift the current paradigm of neuroimaging development towards an efficient, cost-effective engineering solution that will attain multiplicative gains from uHDC and ultrahigh fields, and lead to next generation o MRI/MRS technology and instrument. Such advancement will accelerate human brain imaging and neuroscience research beyond what can be achieved through existing technology, promote new research directions, and transform our understanding regarding the human brain function and dysfunction.
描述(由适用提供):磁共振(MR)成像(MRI)和体内MR光谱法(MRS)技术已成为用于成像大脑结构,功能,连通性,神经化学和神经化学和研究神经学疾病的必不可少的工具。但是,达到卓越的MRI/MRS检测灵敏度,空间和临时成像决议仍然是一个挑战,即使使用最先进的技术,也足以解决基本和挑战性的神经科学问题。改善MRI/MRS性能的主要范例在很大程度上提高了磁场强度,由于许多技术和安全性(即高特定的滥用率(SAR))关注,实际上可能已经成功地限制了人类研究的限制,并且增加了接收器频道数量,这也增加了由于大小减小的噪声特征而最终受到了限制。 To alleviate these major limitations, this R24 proposal relies on the interdisciplinary research effort and expertise of leading experts across two institutions to pioneer an entirely innovative engineering solution that uses the ultra-high dieelectric constant (uHDC) material incorporated with ultra-high-field MRI/MRS techniques for synergistically increasing signal-to-noise ratio and concurrently reduce RF power demand, and for achieving空间/时间分辨率的前所未有的改进比当前的最新MR技术。我们将使用7 Tesla(T)和10.5T全身人类扫描仪开发并优化人脑研究的UHDC材料的原型。此外,我们将探索和评估创新的UHDC-MR技术在尖端神经科学研究中的新实用性和能力。一项初步研究是在人类视觉皮层的柱和皮质层的静止状态连接的功能映射,并在7T时具有超高空间分辨率1H MRI,并以从扩散加权图像从扩散加权图像中获得的解剖连通性完成。 The other one is to combine the uHDC technique with newly developed in vivo 31P and 17O MRS techniques for noninvasively and reliably imaging the cerebral metabolic rates of oxygen consumption and ATP, cerebral blood flow, oxygen extraction Fraction and nicotinamide adenine dinucleotide (NAD) redox state in the human brain at resting and activated states.拟议的研究将把神经影像发展的当前范式转移到有效,具有成本效益的工程解决方案上,该解决方案将获得UHDC和Ultrahigh Fields的乘法增长,并导致下一代ORI/MRI/MRS技术和工具。这种进步将加速人脑成像和神经科学研究,超出现有技术可以实现的目标,促进新的研究方向,并改变我们对人脑功能和功能障碍的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Chen其他文献
Wei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Chen', 18)}}的其他基金
An ensemble deep learning model for tumor bud detection and risk stratification in colorectal carcinoma.
用于结直肠癌肿瘤芽检测和风险分层的集成深度学习模型。
- 批准号:
10564824 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
Establishing translational neuroimaging tools for quantitative assessment of energy metabolism and metabolic reprogramming in healthy and diseased human brain at 7T
建立转化神经影像工具,用于定量评估 7T 健康和患病人脑的能量代谢和代谢重编程
- 批准号:
10714863 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10601180 - 财政年份:2022
- 资助金额:
$ 46.87万 - 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10665804 - 财政年份:2022
- 资助金额:
$ 46.87万 - 项目类别:
Cellular Interactions in Vascular Calcification of Chronic Kidney Disease
慢性肾病血管钙化中的细胞相互作用
- 批准号:
10525401 - 财政年份:2022
- 资助金额:
$ 46.87万 - 项目类别:
Console Replacement and Upgrade of 9.4 Tesla Animal Instrument
9.4特斯拉动物仪控制台更换升级
- 批准号:
10414184 - 财政年份:2022
- 资助金额:
$ 46.87万 - 项目类别:
Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
- 批准号:
10226322 - 财政年份:2020
- 资助金额:
$ 46.87万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10043972 - 财政年份:2020
- 资助金额:
$ 46.87万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10268184 - 财政年份:2020
- 资助金额:
$ 46.87万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10463737 - 财政年份:2020
- 资助金额:
$ 46.87万 - 项目类别:
相似国自然基金
基于荧光共振能量转移及指示剂置换法策略纳米组装体比率荧光识别三磷酸腺苷
- 批准号:22361028
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
三磷酸腺苷驱动的高分子非平衡自组装体系及其可编程生物功能研究
- 批准号:22375074
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
去甲肾上腺素与三磷酸腺苷双位点荧光探针的构建及神经信号转导分子机制可视化解析
- 批准号:22307091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三磷酸腺苷(ATP)诱导的短肽组装及物性研究
- 批准号:22202118
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
三磷酸腺苷(ATP)诱导的短肽组装及物性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating Parkin-mediated Neuronal Energy Maintenance in Methamphetamine Use Disorder
研究甲基苯丙胺使用障碍中 Parkin 介导的神经元能量维持
- 批准号:
10736697 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
Deciphering a novel kinase function for adck2 in the heart
破译心脏中 adck2 的新激酶功能
- 批准号:
10664070 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
Metabolic impact of Intralipid on synaptic function as a mechanism of resuscitation in local anesthetic systemic toxicity
脂肪乳对突触功能的代谢影响作为局麻药全身毒性复苏的机制
- 批准号:
10572885 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
Intermediate-sized Expanded Access Protocol for CNM-Au8 in Amyotrophic Lateral Sclerosis (ALS).
CNM-Au8 在肌萎缩侧索硬化症 (ALS) 中的中等规模扩展访问协议。
- 批准号:
10835565 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
Brain mitochondrial PET imaging and 31P-MR spectroscopy to dissect the role of mitochondrial dysfunction in bioenergetic dysregulation in Dementia with Lewy Bodies pathogenesis
脑线粒体 PET 成像和 31P-MR 光谱剖析线粒体功能障碍在路易体痴呆发病机制中生物能失调的作用
- 批准号:
10738869 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别: