Advancing MRI & MRS Technologies for Studying Human Brain Function and Energetics
推进核磁共振成像
基本信息
- 批准号:8827010
- 负责人:
- 金额:$ 46.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-26 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosine TriphosphateBiological Neural NetworksBrainBrain imagingBrain regionCerebrovascular CirculationCerebrumCharacteristicsClinicalComplementCortical ColumnDetectionDevelopmentDiffusion weighted imagingDimensionsEngineeringFunctional Magnetic Resonance ImagingFunctional disorderGenerationsGeometryGrantHeatingHumanHuman bodyImageImaging DeviceImaging TechniquesImaging technologyInstitutionInterdisciplinary StudyIntramural ResearchLeadMagnetic ResonanceMagnetic Resonance ImagingMagnetic Resonance SpectroscopyMapsMedicineMetabolicMinnesotaMonitorMonoclonal Antibody R24NeurosciencesNeurosciences ResearchNicotinamide adenine dinucleotideNoiseNuclearOrganOutcomeOxidation-ReductionOxygenOxygen ConsumptionParis, FrancePerformancePhotic StimulationPhysicsPhysiologyPilot ProjectsProcessReproducibilityResearchResearch Project GrantsResolutionRestRiskSafetyScienceSignal TransductionSolutionsStructureSystemTechniquesTechnologyTestingTissuesTranslational ResearchUnited States National Institutes of HealthUniversitiesVisual CortexWorkabsorptionbasebrain metabolismbrain researchclinical Diagnosiscost effectivedisease diagnosisimprovedin vivoinnovationinnovative technologiesinstrumentinterestmagnetic fieldnervous system disorderneural circuitneurochemistryneuroimagingnext generationnovelprototypepublic health relevanceradiofrequencyrelating to nervous systemresponsetransmission process
项目摘要
DESCRIPTION (provided by applicant): Magnetic resonance (MR) imaging (MRI) and in vivo MR spectroscopy (MRS) techniques have become indispensable tools for imaging brain structure, function, connectivity, neurochemistry and neuroenergetics, and for investigating neurological disorders. However, it remains a challenge to achieve superior MRI/MRS detection sensitivity, spatial and temporal imaging resolutions adequate for addressing fundamental and challenging neuroscience questions even with the most advanced technology. The prevailing paradigms for improving MRI/MRS performance largely invoke increasing the magnetic field strength, which may have reached practically achievable limits for human studies due to many technological and safety (i.e., high specific absorption rate (SAR)) concerns, and increasing the receiver channel count which is also ultimately limited due to noise characteristics of coils of decreasing size. To alleviate these major limitations, this R24 proposal relies on the interdisciplinary research efforts and expertise of leading experts across two institutions to pioneer an entirely innovative engineering solution that uses the ultra-high dielectric constant (uHDC) material incorporated with ultrahigh-field MRI/MRS techniques for synergistically increase signal-to-noise ratio and concurrently reduce RF power demand, and for achieving unprecedented improvements in spatial/temporal resolution over the current state-of-the-art MR technologies. We will develop and optimize prototypes of uHDC material for human brain studies using 7 Tesla (T) and 10.5T whole-body human scanners. Moreover, we will exploit and assess the new utility and capability of the innovative uHDC-MR technology for cutting-edge neuroscience research. One pilot study is the functional mapping of neural circuits and resting-state connectivity at the level of columns and cortical layers in the human visual cortex with ultrahigh spatial resolution 1H MRI at 7T, complemented with anatomical connectivity derived from diffusion weighted images for tractography. The other one is to combine the uHDC technique with newly developed in vivo 31P and 17O MRS techniques for noninvasively and reliably imaging the cerebral metabolic rates of oxygen consumption and ATP, cerebral blood flow, oxygen extraction fraction and nicotinamide adenine dinucleotide (NAD) redox state in the human brain at resting and activated states. The proposed research will shift the current paradigm of neuroimaging development towards an efficient, cost-effective engineering solution that will attain multiplicative gains from uHDC and ultrahigh fields, and lead to next generation o MRI/MRS technology and instrument. Such advancement will accelerate human brain imaging and neuroscience research beyond what can be achieved through existing technology, promote new research directions, and transform our understanding regarding the human brain function and dysfunction.
描述(由申请人提供):磁共振(MR)成像(MRI)和体内磁共振波谱(MRS)技术已成为大脑结构、功能、连通性、神经化学和神经能量学成像以及研究神经系统疾病不可或缺的工具。即使采用最先进的技术,实现卓越的 MRI/MRS 检测灵敏度、足以解决基本和具有挑战性的神经科学问题的空间和时间成像分辨率仍然是一个挑战。 MRI/MRS 性能在很大程度上涉及增加磁场强度,由于许多技术和安全(即高比吸收率 (SAR))问题,这可能已达到人类研究实际上可实现的极限,并增加接收器通道数,这也是由于尺寸减小的线圈的噪声特性最终受到限制,为了缓解这些主要限制,该 R24 提案依赖于两个机构的领先专家的跨学科研究工作和专业知识,开创了一种使用超高介电常数的完全创新的工程解决方案。 (uHDC) 材料与超高场 MRI/MRS 技术相结合,可协同提高信噪比,同时降低射频功率需求,并在空间/时间分辨率方面实现比当前最先进的 MR 前所未有的改进我们将使用 7 Tesla (T) 和 10.5T 全身人体扫描仪开发和优化用于人脑研究的 uHDC 材料原型。此外,我们将开发和评估该技术的新实用性和功能。用于尖端神经科学研究的创新 uHDC-MR 技术是一项试点研究,利用 7T 的超高空间分辨率 1H MRI 来绘制人类视觉皮层的神经回路和静息态连接的功能图谱。另一种是将 uHDC 技术与新开发的体内 31P 和 17O MRS 技术相结合,对大脑进行无创且可靠的成像。人脑在静息和激活状态下的耗氧量和 ATP 代谢率、脑血流量、氧提取分数和烟酰胺腺嘌呤二核苷酸 (NAD) 氧化还原状态。拟议的研究将把当前的神经影像学发展模式转向高效、成本低的方向。 -有效的工程解决方案,将从 uHDC 和超高场中获得倍增收益,并导致下一代 MRI/MRS 技术和仪器。这种进步将加速人类大脑成像和神经科学研究,超越现有技术所能实现的水平,促进。新的研究方向,并改变我们对人类大脑功能和功能障碍的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Chen其他文献
Wei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Chen', 18)}}的其他基金
An ensemble deep learning model for tumor bud detection and risk stratification in colorectal carcinoma.
用于结直肠癌肿瘤芽检测和风险分层的集成深度学习模型。
- 批准号:
10564824 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
Establishing translational neuroimaging tools for quantitative assessment of energy metabolism and metabolic reprogramming in healthy and diseased human brain at 7T
建立转化神经影像工具,用于定量评估 7T 健康和患病人脑的能量代谢和代谢重编程
- 批准号:
10714863 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10601180 - 财政年份:2022
- 资助金额:
$ 46.87万 - 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10665804 - 财政年份:2022
- 资助金额:
$ 46.87万 - 项目类别:
Cellular Interactions in Vascular Calcification of Chronic Kidney Disease
慢性肾病血管钙化中的细胞相互作用
- 批准号:
10525401 - 财政年份:2022
- 资助金额:
$ 46.87万 - 项目类别:
Console Replacement and Upgrade of 9.4 Tesla Animal Instrument
9.4特斯拉动物仪控制台更换升级
- 批准号:
10414184 - 财政年份:2022
- 资助金额:
$ 46.87万 - 项目类别:
Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
- 批准号:
10226322 - 财政年份:2020
- 资助金额:
$ 46.87万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10043972 - 财政年份:2020
- 资助金额:
$ 46.87万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10268184 - 财政年份:2020
- 资助金额:
$ 46.87万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10463737 - 财政年份:2020
- 资助金额:
$ 46.87万 - 项目类别:
相似国自然基金
基于荧光共振能量转移及指示剂置换法策略纳米组装体比率荧光识别三磷酸腺苷
- 批准号:22361028
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
三磷酸腺苷驱动的高分子非平衡自组装体系及其可编程生物功能研究
- 批准号:22375074
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
去甲肾上腺素与三磷酸腺苷双位点荧光探针的构建及神经信号转导分子机制可视化解析
- 批准号:22307091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三磷酸腺苷(ATP)诱导的短肽组装及物性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
P4-三磷酸腺苷酶对磷脂分子的催化转移反应机理研究
- 批准号:22103066
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating Parkin-mediated Neuronal Energy Maintenance in Methamphetamine Use Disorder
研究甲基苯丙胺使用障碍中 Parkin 介导的神经元能量维持
- 批准号:
10736697 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
Deciphering a novel kinase function for adck2 in the heart
破译心脏中 adck2 的新激酶功能
- 批准号:
10664070 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
Metabolic impact of Intralipid on synaptic function as a mechanism of resuscitation in local anesthetic systemic toxicity
脂肪乳对突触功能的代谢影响作为局麻药全身毒性复苏的机制
- 批准号:
10572885 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
Intermediate-sized Expanded Access Protocol for CNM-Au8 in Amyotrophic Lateral Sclerosis (ALS).
CNM-Au8 在肌萎缩侧索硬化症 (ALS) 中的中等规模扩展访问协议。
- 批准号:
10835565 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
Brain mitochondrial PET imaging and 31P-MR spectroscopy to dissect the role of mitochondrial dysfunction in bioenergetic dysregulation in Dementia with Lewy Bodies pathogenesis
脑线粒体 PET 成像和 31P-MR 光谱剖析线粒体功能障碍在路易体痴呆发病机制中生物能失调的作用
- 批准号:
10738869 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别: