Mechanisms and Epigenetic Effectors of Cellular Reprogramming Factor Activity
细胞重编程因子活性的机制和表观遗传效应器
基本信息
- 批准号:8714612
- 负责人:
- 金额:$ 4.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:BindingBiochemicalBiological AssayBiological ModelsCell TherapyCellsChimera organismChromatinChromatin StructureClinicalComplexCustomDNA BindingDNA-Binding ProteinsDevelopmentDiseaseDissociationDue ProcessEP300 geneEngineeringEnzymesEpigenetic ProcessEthicsExhibitsFibrinogenFibroblastsFluorescenceFluorescence Resonance Energy TransferFluorescence SpectroscopyGKLF proteinGene ExpressionGenerationsGeneticGenetic TranscriptionGenomeGerm LayersGoalsHistonesHumanIn VitroLeadLengthLigationModelingModificationMonitorNucleosomesPathogenesisPatientsPatternPeptide SynthesisPopulationPost-Translational Protein ProcessingProcessPropertyProtein ChemistryProtein EngineeringProteinsProtocols documentationReaderRecruitment ActivityRegenerative MedicineRelative (related person)ResearchResearch ProposalsRoleSiteSomatic CellSyndromeTechniquesTherapeuticVariantbasebiophysical propertiesc-myc Genescell typechromatin modificationclinical applicationdesignembryonic stem cellengineering designfluorophoregain of functiongenome wide association studyheterochromatin-specific nonhistone chromosomal protein HP-1histone modificationin vitro Assayin vivoinduced pluripotent stem cellinsightparticlepluripotencypublic health relevanceresearch studyscreeningself-renewalstem cell technologytool
项目摘要
DESCRIPTION (provided by applicant): The goal of this research proposal is to utilize synthetically generated chromatin templates to facilitate the biochemical and biophysical characterization of the Oct4, Sox2, Klf4, and c-Myc (OSKM) pluripotency regulators. When ectopically expressed in somatic cells, OSKM act synergistically to reprogram cell fate to pluripotency, resulting in self-renewing induced pluripotent stem cells (iPSCs) that can differentiate into cell types of the three germ layers. iPSCs are an invaluable tool in the fields f regenerative medicine and custom cell therapies because they are functionally indistinguishable from embryonic stem cells (ESCs) and circumvent all ESC-related ethical concerns. Furthermore, iPSCs that are generated from patients with complex genetic syndromes can be differentiated into the afflicted cell type to afford unparalleled insight into the pathogenesis ofa given disease and to provide a model that is compatible with therapeutic screening. Currently, less than 1% of the starting cell population will reach pluripotency in a typical reprogramming experiment, and the process needs to be substantially optimized to fully realize the clinical applications of iPSCs.
OSKM bind to the genome, where they influence epigenetic modifications and control gene expression by recruiting a variety of transcriptional regulators to chromatin. Not surprisingly, OSKM localization patterns in iPSCs and ESCs are highly similar and mislocalization is observed in cells that fail to achieve pluripotency. Interestingly, certain epigenetic marks are able to act as barriers to the reprogramming process by disrupting OSKM activity. Despite the fact that genome-wide studies continue to emphasize the importance of epigenetic signatures in OSKM localization and function, there is a lack of mechanistic information describing the crosstalk between histone modifications and OSKM. I propose to recapitulate reprogramming factor-nucleosome interactions in vitro by combining techniques in peptide synthesis, protein engineering, site-specific protein modification, and fluorescence spectroscopy. These studies will elucidate the effects that histone marks have on OSKM binding and function in the context of mononucleosomes and nucleosome arrays. Additionally, I will engineer multivalent Oct4, Sox2 and Klf4 proteins that target epigenetic barriers, which will be used to generate iPSCs. The specific aims of this research are: 1) characterize the effect of OSKM binding on nucleosome stability and chromatin structure in vitro, 2.) determine the role of key epigenetic modifications in OSKM binding and function, and 3.) design chimeric factors that can overcome epigenetic barriers to reprogramming. This proposed research is designed to delineate valuable mechanistic information underlying OSKM binding and function, which is crucial for the development of reprogramming strategies that can overcome epigenetic barriers and generate high quality iPSCs on a more consistent basis.
描述(由申请人提供):本研究提案的目标是利用合成生成的染色质模板来促进 Oct4、Sox2、Klf4 和 c-Myc (OSKM) 多能性调节因子的生化和生物物理表征。当在体细胞中异位表达时,OSKM 协同作用,将细胞命运重新编程为多能性,从而产生自我更新的诱导多能干细胞 (iPSC),该细胞可以分化为三个胚层的细胞类型。 iPSC 是再生医学和定制细胞疗法领域的宝贵工具,因为它们在功能上与胚胎干细胞 (ESC) 没有区别,并且规避了所有与 ESC 相关的伦理问题。此外,从患有复杂遗传综合征的患者身上产生的 iPSC 可以分化为受影响的细胞类型,从而为特定疾病的发病机制提供无与伦比的洞察力,并提供与治疗筛选兼容的模型。目前,在典型的重编程实验中,只有不到1%的起始细胞群能够达到多能性,并且需要对过程进行大幅优化才能完全实现iPSC的临床应用。
OSKM 与基因组结合,通过向染色质招募各种转录调节因子来影响表观遗传修饰并控制基因表达。毫不奇怪,iPSC 和 ESC 中的 OSKM 定位模式高度相似,并且在未能实现多能性的细胞中观察到错误定位。有趣的是,某些表观遗传标记能够通过破坏 OSKM 活性来充当重编程过程的障碍。尽管全基因组研究继续强调表观遗传特征在 OSKM 定位和功能中的重要性,但缺乏描述组蛋白修饰和 OSKM 之间串扰的机制信息。我建议通过结合肽合成、蛋白质工程、位点特异性蛋白质修饰和荧光光谱技术来概括重编程因子与核小体的体外相互作用。这些研究将阐明组蛋白标记对单核小体和核小体阵列中 OSKM 结合和功能的影响。此外,我将设计针对表观遗传障碍的多价 Oct4、Sox2 和 Klf4 蛋白,这些蛋白将用于生成 iPSC。本研究的具体目标是:1) 表征 OSKM 结合对体外核小体稳定性和染色质结构的影响,2.) 确定关键表观遗传修饰在 OSKM 结合和功能中的作用,以及 3.) 设计能够克服重编程的表观遗传障碍。这项拟议的研究旨在描绘 OSKM 结合和功能背后的有价值的机制信息,这对于开发能够克服表观遗传障碍并在更一致的基础上生成高质量 iPSC 的重编程策略至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glen Liszczak其他文献
Glen Liszczak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glen Liszczak', 18)}}的其他基金
Regulation and function of site-specific protein poly-ADP-ribosylation
位点特异性蛋白质聚 ADP 核糖基化的调控和功能
- 批准号:
10668492 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
Mechanisms and Epigenetic Effectors of Cellular Reprogramming Factor Activity
细胞重编程因子活性的机制和表观遗传效应器
- 批准号:
8851409 - 财政年份:2014
- 资助金额:
$ 4.99万 - 项目类别:
相似国自然基金
免疫层析生化反应过程建模、优化控制与分析及在海洋生物毒素定量检测中的应用
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
基于集成光流控环形谐振腔的多功能生化检测技术的研究
- 批准号:61905224
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于微生物电解电池的BOD传感器基础研究
- 批准号:21806126
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于准三维铝纳米有序阵列的高灵敏LSPR生化传感器的构建与性能研究
- 批准号:21775168
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
用于C-反应蛋白检测的电化学生物传感器研究
- 批准号:61661014
- 批准年份:2016
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 4.99万 - 项目类别:
Selective targeting of matrix metalloproteinases for developing preterm labor therapeutics
选择性靶向基质金属蛋白酶用于开发早产疗法
- 批准号:
10509786 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Targeting Myosin to Treat Polycystic Kidney Disease
靶向肌球蛋白治疗多囊肾
- 批准号:
10699859 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别: