Modeling Core
建模核心
基本信息
- 批准号:8577280
- 负责人:
- 金额:$ 77.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-21 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArchitectureBacteriaBiologicalBiologyCell modelCellsCessation of lifeClinicalComputational BiologyDataDiseaseDisease ProgressionEnsureExperimental DesignsGene ExpressionGenesGeneticGenomeGoalsHumanImmune responseInfectionInstructionJointsKnock-outKnowledgeLeadershipLearningLinkMachine LearningMeasurementMeasuresMicrobiologyModelingModificationMycobacterium tuberculosisNetwork-basedNoiseOutcomePathway interactionsPatternPhasePhenotypePhylogenyPredispositionRegulator GenesRegulatory ElementResistance to infectionRoleSmall Interfering RNASystemSystems BiologyTrainingTranscriptional RegulationTuberculosisWorkbasebiological systemscombinatorialdata integrationfollow-upinsightmacrophagemulti-scale modelingnetwork modelsnovelpathogenpredictive modelingresearch studyresponsetraittranscription factor
项目摘要
PROJECT SUMMARY (See instructions):
The Modeling Core will integrate data from Projects 1 and 2 and construct a joint host and pathogen gene regulatory network (GRN) model by regression-based inference of direct and indirect inter-organismal influences on gene expression. This cross-species GRN model will link quantitative phenotypes to causal environmental and genetic triggers that influence the outcome of TB infection, specifically susceptibility, resistance, infection progression, persistence, and clearance.
Central to these predictive models are machine learning algorithms - cMonkey and Inferelator - that will work in tandem to discover groups of genes that are conditionally co-regulated by combinatorial environmental (e.g. pH) and genetic (e.g; transcription factors) influences. The data integration strategies incorporated into these algorithms will overcome several challenges: (1) technical and biological noise in systems biology data; (2) lack of functional information for over 50% of all genes in the genome; (3) lack of detailed knowledge of regulatory mechanisms; and (4) incomplete knowledge of the environmental space to which both the host and MTB networks have adapted. The Modeling Core will reverse engineer the architecture of GRNs directly from data while simultaneously learning the associated dynamics of transcriptional regulation. Moreover, genes of unknown function will be integrated into the network based on their co-expression patterns, and other shared features such as interactions, phylogeny, and cis-regulatory elements; making it possible to discover additional genes that might be critical for outcome of infection.
Preliminary GRN models for both MTB and BMMO have already been constructed, and analysis of these models has demonstrated that they recapitulate existing knowledge and predict new genes that might, influence the outcome of MTB infection. These model predictions have provided guidance for experimental designs and priorities in both Projects.
项目摘要(请参阅说明):
建模核心将通过基于回归的直接和间接有机体间影响基因表达的推断来整合项目1和2的数据,并通过基于回归和间接的基因间影响来构建关节宿主和病原体基因调节网络(GRN)模型。这种跨物种的GRN模型将定量表型与影响结核病感染结果的因果环境和遗传触发因素,特别是易感性,耐药性,感染进展,持久性和清除率。
这些预测模型的核心是机器学习算法 - cmonkey和地狱 - 将同时起作用,以发现由组合环境(例如pH)和遗传(例如,转录因子)影响的基因组。这些算法中纳入的数据集成策略将克服几个挑战:(1)系统生物学数据中的技术和生物噪声; (2)缺乏基因组中所有基因超过50%的功能信息; (3)缺乏监管机制的详细知识; (4)对主机和MTB网络已经适应的环境空间的不完整知识。建模核心将直接从数据中反向工程GRN的体系结构,同时学习转录调节的相关动力。此外,未知功能的基因将根据其共表达模式集成到网络中,以及其他共享特征,例如相互作用,系统发育和顺式调节元素。可以发现可能对感染结果至关重要的其他基因。
MTB和BMMO的初步GRN模型已经构建,对这些模型的分析表明,它们概括了现有知识并预测可能影响MTB感染结果的新基因。这些模型预测为两个项目的实验设计和优先级提供了指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nitin S Baliga其他文献
Nitin S Baliga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nitin S Baliga', 18)}}的其他基金
Systems biology of intratumoral heterogeneity in glioblastoma
胶质母细胞瘤瘤内异质性的系统生物学
- 批准号:
10366692 - 财政年份:2022
- 资助金额:
$ 77.46万 - 项目类别:
Systems biology of intratumoral heterogeneity in glioblastoma
胶质母细胞瘤瘤内异质性的系统生物学
- 批准号:
10544035 - 财政年份:2022
- 资助金额:
$ 77.46万 - 项目类别:
A systems approach to manipulate microbial adaptation to structured environments
操纵微生物适应结构化环境的系统方法
- 批准号:
10159858 - 财政年份:2019
- 资助金额:
$ 77.46万 - 项目类别:
A systems approach to manipulate microbial adaptation to structured environments
操纵微生物适应结构化环境的系统方法
- 批准号:
10425375 - 财政年份:2019
- 资助金额:
$ 77.46万 - 项目类别:
A systems approach to manipulate microbial adaptation to structured environments
操纵微生物适应结构化环境的系统方法
- 批准号:
10627994 - 财政年份:2019
- 资助金额:
$ 77.46万 - 项目类别:
A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
- 批准号:
10654540 - 财政年份:2016
- 资助金额:
$ 77.46万 - 项目类别:
A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
- 批准号:
9220609 - 财政年份:2016
- 资助金额:
$ 77.46万 - 项目类别:
A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
- 批准号:
10059161 - 财政年份:2016
- 资助金额:
$ 77.46万 - 项目类别:
A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
- 批准号:
10367797 - 财政年份:2016
- 资助金额:
$ 77.46万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
3D genome organization of the Ets1-Fli1 locus controls allergic responses
Ets1-Fli1 基因座的 3D 基因组组织控制过敏反应
- 批准号:
10654172 - 财政年份:2023
- 资助金额:
$ 77.46万 - 项目类别:
Computational framework for analyzing and annotating single bacterium RNA-Seq data
用于分析和注释单细菌 RNA-Seq 数据的计算框架
- 批准号:
10444669 - 财政年份:2022
- 资助金额:
$ 77.46万 - 项目类别:
Computational framework for analyzing and annotating single bacterium RNA-Seq data
用于分析和注释单细菌 RNA-Seq 数据的计算框架
- 批准号:
10610447 - 财政年份:2022
- 资助金额:
$ 77.46万 - 项目类别:
Automated Dental Fracture Detection using High Resolution CBCT and Advanced Image Analysis
使用高分辨率 CBCT 和高级图像分析自动检测牙齿骨折
- 批准号:
10491799 - 财政年份:2021
- 资助金额:
$ 77.46万 - 项目类别:
Quantification of bacterial strain count in the human gut microbiome in health and disease
健康和疾病中人体肠道微生物组中细菌菌株计数的量化
- 批准号:
10387448 - 财政年份:2021
- 资助金额:
$ 77.46万 - 项目类别: