A systems approach to manipulate microbial adaptation to structured environments
操纵微生物适应结构化环境的系统方法
基本信息
- 批准号:10159858
- 负责人:
- 金额:$ 88.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-07 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAntimicrobial ResistanceBiological AssayCaffeineCellsCessation of lifeComplexCost-Benefit AnalysisCosts and BenefitsCoupledCuesDoseDrug ToleranceEnvironmentEnvironmental Risk FactorEscherichia coliEvaluationEvolutionFrequenciesFutureGenerationsGenesGeneticGenetic TranscriptionGenetic VariationGenomeGenome engineeringGenomicsHeterogeneityImmune ToleranceImmunotherapeutic agentKnowledgeLaboratoriesLibrariesLifeLinkMetabolicModelingMonitorMutationMycobacterium tuberculosisNatureNutrientOrganismPharmaceutical PreparationsPhenotypePopulation AnalysisPopulation HeterogeneityRaceReadinessResourcesRoleSaccharomyces cerevisiaeSorting - Cell MovementStarvationStressStructureSystemSystems AnalysisTechnologyTemperatureTestingYeastsarmbasecostenvironmental changeexperimental studyfitnesshigh throughput technologymicrobialnetwork modelsnovelpathogenpredictive modelingpreemptpressurepreventprogramsresponsesuccesstheoriestooltranscriptometranscriptomics
项目摘要
PROJECT SUMMARY (30 lines)
Adaptive prediction (AP) is a strategy utilized by all organisms to predict and prepare for a future selective
pressure. E. coli and M. tuberculosis (MTB), for instance, utilize neutral cues such as a rise in temperature or
nutrient starvation to prepare in advance for a hostile host environment. There is growing evidence that the
drug/immune tolerant phenotype resulting from AP gives pathogens a window of opportunity to evolve
antimicrobial resistance (AMR)—a catastrophic problem that could cause >10 million deaths by 2050.
Knowledge of how AP is encoded within the genome and gene networks of an organism will enable
strategies to disrupt and prevent drug tolerance to potentiate complete killing by frontline drugs. We’ve
demonstrated proof-of-concept for this strategy by potentiating bedaquiline killing of MTB through rational
disruption of the starvation-induced, bedaquiline-specific tolerance network with a second drug—pretomanid
(Peterson et al, Nature Micro 2016). To further advance this approach, we established a laboratory evolution
framework to dissect dynamics and mechanisms of AP (Lomana et al, Genome Biol Evol 2017). Using this set
up we have demonstrated that when subjected to laboratory evolution in an artificially structured environment,
novel AP emerges within 50 generations to enable Saccharomyces cerevisiae (yeast) to use caffeine as a cue
to anticipate and elicit a protective response to subsequent challenge with a sub-lethal dose of 5-fluoroorotic
acid. Based on evolutionary dynamics, genetic variation, and phenotypic heterogeneity of evolved lines, we
hypothesize that three factors govern emergence and retention of AP: (1) cost vs. benefit of AP vis-à-vis
frequency and predictability of coupled environmental changes, including period between exposures, energy
required for advanced preparedness, and overall fitness benefit; (2) coordinated changes in metabolic and
regulatory networks to adaptively trigger a tolerant state upon sensing a cue; and (3) evolutionary game
strategies (bet-hedging) arising from population heterogeneity. The two specific aims to test these hypotheses
will make use of a systems approach to study and manipulate complex phenotypes, including, (i) an integrated
network model for predicting phenotypic consequences of regulatory and metabolic mutations; (ii) a technology
for phenotyping >10,000 colonies, (iii) a technology to sort translationally active and dormant sub-populations;
and (iv) laboratory evolution and genome engineering capabilities to generate and manipulate AP. Through
iterative computational prediction and experimentation, we will characterize how structure and dynamics of
environmental change influences emergence and retention of AP (Aim 1); and elucidate and rationally
manipulate interplay of metabolic, regulatory, and evolutionary game strategies for AP (Aim 2). This project will
advance theory of AP with implications on strategies to preempt AMR; advance tools to predict and
manipulate complex phenotypes; and track and isolate rare strains within heterogeneous populations.
1
项目摘要(30行)
自适应预测(AP)是所有生物体使用的一种策略,以预测和准备未来的选择性
压力。例如
营养饥饿,以预先为敌对的主机环境做准备。越来越多的证据表明
AP产生的药物/免疫耐受的表型为病原体提供了进化的机会窗口
抗菌耐药性(AMR) - 到2050年,可能导致1000万死亡的灾难性问题。
了解AP在生物体的基因组和基因网络中如何编码的知识将实现
破坏和防止药物对一线药物杀死可能完全杀死的策略。我们已经
通过理性地将MTB杀死MTB来证明该策略的概念证明
使用第二种药物的饥饿诱导的,贝塔奎林特异性耐受性网络的破坏
(Peterson等,Nature Micro 2016)。为了进一步推进这种方法,我们建立了实验室进化
剖析AP动力学和机制的框架(Lomana等,基因组Biol Evol 2017)。使用此组
我们已经证明,在人工结构化的环境中经过实验室进化时,
新型AP在50代内出现,以使酿酒酵母(酵母)使用咖啡馆作为提示
预测并引起对随后挑战的受保护反应,并以5-氟毒素的亚致死剂量
酸。根据进化线的进化动力学,遗传变异和表型异质性,我们
假设三个因素控制着AP的出现和保留。
耦合环境变化的频率和可预测性,包括暴露,能量之间的周期
高级准备和整体健身益处所需的; (2)代谢和代谢的协调变化
调节网络在感应提示时适应触发宽容状态; (3)进化游戏
人口异质性引起的策略(赌注)。这两个特定的目的是检验这些假设
将利用系统方法来研究和操纵复杂的表型,包括(i)集成
用于预测调节和代谢突变的表型后果的网络模型; (ii)一项技术
对于> 10,000个菌落的表型,(iii)一种用于对翻译活跃和休眠子群体进行分类的技术;
(iv)实验室进化和基因组工程能力,以产生和操纵AP。通过
迭代计算预测和实验,我们将表征如何结构和动力学
环境变化影响AP的紧急情况和保留(AIM 1);并阐明和理性
操纵AP的代谢,调节和进化游戏策略的相互作用(AIM 2)。这个项目将
AP的提前理论具有对抢先AMR的策略的影响;预测和
操纵复杂表型;在异质种群中跟踪和分离稀有菌株。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nitin S Baliga其他文献
Nitin S Baliga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nitin S Baliga', 18)}}的其他基金
Systems biology of intratumoral heterogeneity in glioblastoma
胶质母细胞瘤瘤内异质性的系统生物学
- 批准号:
10366692 - 财政年份:2022
- 资助金额:
$ 88.87万 - 项目类别:
Systems biology of intratumoral heterogeneity in glioblastoma
胶质母细胞瘤瘤内异质性的系统生物学
- 批准号:
10544035 - 财政年份:2022
- 资助金额:
$ 88.87万 - 项目类别:
A systems approach to manipulate microbial adaptation to structured environments
操纵微生物适应结构化环境的系统方法
- 批准号:
10425375 - 财政年份:2019
- 资助金额:
$ 88.87万 - 项目类别:
A systems approach to manipulate microbial adaptation to structured environments
操纵微生物适应结构化环境的系统方法
- 批准号:
10627994 - 财政年份:2019
- 资助金额:
$ 88.87万 - 项目类别:
A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
- 批准号:
9220609 - 财政年份:2016
- 资助金额:
$ 88.87万 - 项目类别:
A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
- 批准号:
10654540 - 财政年份:2016
- 资助金额:
$ 88.87万 - 项目类别:
A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
- 批准号:
10059161 - 财政年份:2016
- 资助金额:
$ 88.87万 - 项目类别:
A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
- 批准号:
10367797 - 财政年份:2016
- 资助金额:
$ 88.87万 - 项目类别:
相似国自然基金
针对抗菌素耐药性的新型诊断和预防技术开发
- 批准号:82161138017
- 批准年份:2021
- 资助金额:300 万元
- 项目类别:国际(地区)合作与交流项目
抗菌聚合物调控细菌纳管生成及其介导的耐药性传播机制研究
- 批准号:52173118
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
针对抗菌素耐药性的新型诊断和预防技术开发
- 批准号:8211101256
- 批准年份:2021
- 资助金额:0.00 万元
- 项目类别:国际(地区)合作与交流项目
抗菌聚合物调控细菌纳管生成及其介导的耐药性传播机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
新型抗菌疏松纳滤膜及其对细菌耐药性污染控制机制研究
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
DeADP-ribosylation of host targets mediated by a bacterial effector
由细菌效应子介导的宿主靶标的 DeADP-核糖基化
- 批准号:
10667971 - 财政年份:2023
- 资助金额:
$ 88.87万 - 项目类别:
Actions of spiropyrimidinetriones against bacterial type II topoisomerases
螺嘧啶三酮对细菌 II 型拓扑异构酶的作用
- 批准号:
10750473 - 财政年份:2023
- 资助金额:
$ 88.87万 - 项目类别:
Connecting structure and fitness landscapes to overcome antibiotic resistance
连接结构和健身景观以克服抗生素耐药性
- 批准号:
10679332 - 财政年份:2023
- 资助金额:
$ 88.87万 - 项目类别:
Pyocins as antibacterials to treat Pseudomonas aeruginosa infections
脓毒素作为抗菌药物治疗铜绿假单胞菌感染
- 批准号:
10727705 - 财政年份:2023
- 资助金额:
$ 88.87万 - 项目类别:
Role of sulfide in oral microbiota-host interactions that promote periodontitis
硫化物在促进牙周炎的口腔微生物群与宿主相互作用中的作用
- 批准号:
10828614 - 财政年份:2023
- 资助金额:
$ 88.87万 - 项目类别: