Ionic Mechanisms Underlying Dorsal Root Ganglion Excitability
背根神经节兴奋性的离子机制
基本信息
- 批准号:8438806
- 负责人:
- 金额:$ 31.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAfferent NeuronsAnalgesicsAttenuatedBehaviorBehavioral AssayBindingBiochemicalCellsComplexConsensusDiabetes MellitusDiabetic NeuropathiesDiabetic mouseEsthesiaExhibitsFamilyFunctional disorderFutureGene ExpressionGenesGlucoseGoalsHyperalgesiaImmunohistochemistryIonsKineticsKnockout MiceLabelLeadLinkMarshalMetabolicMitogen Activated Protein Kinase 1ModelingMolecularMusNervous system structureNeuronsNeuropathyNumbnessOutcomePainPathway interactionsPerceptionPeripheral Nervous System DiseasesPersistent painPhenotypePhosphorylationPhosphorylation InhibitionPhosphorylation SitePhysiciansPhysiologicalPopulationPotassiumPotassium ChannelPrimary LesionProcessPropertyProteinsRattusReactionRecombinantsReflex actionRegulationResearch Project GrantsRoleSensorySignal TransductionSite-Directed MutagenesisSocietiesSodiumSpinal GangliaStimulusStreptozocinSymptomsSystemTechniquesTestingUbiquitinationUnemploymentVisitWestern WorldWorkXenopus oocyteallodyniachronic paindesigndiabeticexperiencehuman MAPK14 proteinimprovedneuronal excitabilitynovelpain behaviorpainful neuropathyresponsetreatment strategy
项目摘要
DESCRIPTION (provided by applicant): Pain sensation in neuropathic pain is complex consisting of weakness, sensory deficits and numbness, reflex changes, abnormal sensations that occur either spontaneously or in reaction to external stimuli, hyperalgesia and allodynia. Perturbations in dorsal root ganglion (DRG) neuron excitability are key in precipitating neuropathic pain, especially during diabetes, the most common cause of neuropathic pain. During diabetes, the p38 mitogen-activated protein kinase (p38MAPK) signaling system is activated and when this pathway is inhibited, diabetes-induced neuropathic pain is attenuated. However, the major ion conductances involved in the neuropathic process of DRG neurons are unclear. DRG neurons possess high levels of a novel, understudied family of potassium channels called sodium-activated potassium channels (KNa). Our previous work has shown that KNa is a considerable component of the outward potassium current and is responsible for firing accommodation in DRG neurons. When we experimentally reduce the expression of these channels in DRG neurons, it produces hyperexcitability that resembles neuropathic neurons. There are two genes encoding these channels, Slack and Slick. In heterologous expression systems, the Slick and Slack subunits can co-assemble to form heteromeric channels systems with very slow activation kinetics ideal for controlling firing accommodation. Moreover, homomeric Slick channels appear to be subject to Nedd4l-dependent ubiquitination, suggesting that Slack/Slick heteromeric channels are the preferred configuration of native KNa channels. Slack and Slick also have p38MAPK consensus phosphorylation sites proximal to the sodium binding/gating region of the channels. A decrease in KNa channel activity likely ensues after diabetes-activated p38MAPK signaling. Since diabetes also affects transcriptional activities, we expect to find long-term changes in KNa channel expression in neurons. Using electrophysiological, biochemical, molecular, pain behavioral assays and a previously uncharacterized Slick knockout mouse, we will test the hypotheses: heteromeric KNa channels constrain sensory neuron hyperexcitability and neuropathic pain is associated with decreased KNa channel activity in DRG neurons. The specific aims are (1) To study the regulation of DRG KNa channels by p38MAPK (2) To investigate the subunit properties of KNa channels in DRG neurons (3) To study neuronal KNa channel activity during diabetes and compare pain behavior to Slick knockout mice. This research project will assess the involvement of KNa channels in the diabetic neuropathy.
PUBLIC HEALTH RELEVANCE: Elucidating the mechanisms underlying persistent pain in peripheral neuropathy is of vital importance for future treatment strategies. This proposal is designed to determine how sodium-activated potassium channels regulate sensory neuron excitability and if they are down regulated during neuropathic pain. The conclusions of these studies may identify these channels as analgesic targets for neuropathic pain.
描述(由申请人提供):神经性疼痛的疼痛感觉很复杂,包括无力、感觉缺陷和麻木、反射变化、自发发生或对外部刺激反应的异常感觉、痛觉过敏和异常性疼痛。背根神经节 (DRG) 神经元兴奋性的扰动是引发神经性疼痛的关键,尤其是在糖尿病期间,糖尿病是神经性疼痛的最常见原因。糖尿病期间,p38 丝裂原激活蛋白激酶 (p38MAPK) 信号系统被激活,当该通路受到抑制时,糖尿病引起的神经性疼痛就会减弱。然而,参与 DRG 神经元神经病理过程的主要离子电导尚不清楚。 DRG 神经元拥有高水平的新型、尚未研究的钾通道家族,称为钠激活钾通道 (KNa)。我们之前的工作表明,KNa 是外向钾电流的重要组成部分,负责 DRG 神经元的调节调节。当我们通过实验减少 DRG 神经元中这些通道的表达时,它会产生类似于神经病性神经元的过度兴奋。有两个基因编码这些通道:Slack 和 Slick。在异源表达系统中,Slick 和 Slack 亚基可以共同组装形成异聚通道系统,其激活动力学非常缓慢,非常适合控制发射调节。此外,同聚 Slick 通道似乎受到 Nedd4l 依赖性泛素化的影响,表明 Slack/Slick 异聚通道是天然 KNa 通道的首选配置。 Slack 和 Slick 还具有靠近通道钠结合/门控区域的 p38MAPK 共有磷酸化位点。糖尿病激活 p38MAPK 信号传导后,KNa 通道活性可能会降低。由于糖尿病也会影响转录活动,因此我们期望发现神经元中 KNa 通道表达的长期变化。使用电生理学、生化、分子、疼痛行为测定和先前未表征的 Slick 基因敲除小鼠,我们将测试以下假设:异聚 KNa 通道限制感觉神经元过度兴奋,神经性疼痛与 DRG 神经元中 KNa 通道活性降低有关。具体目标是 (1) 研究 p38MAPK 对 DRG KNa 通道的调节 (2) 研究 DRG 神经元中 KNa 通道的亚基特性 (3) 研究糖尿病期间神经元 KNa 通道的活性并比较与 Slick 基因敲除小鼠的疼痛行为。该研究项目将评估 KNa 通道在糖尿病神经病变中的参与情况。
公共健康相关性:阐明周围神经病变持续性疼痛的机制对于未来的治疗策略至关重要。该提案旨在确定钠激活钾通道如何调节感觉神经元兴奋性以及它们在神经性疼痛期间是否下调。这些研究的结论可能会将这些通道确定为神经性疼痛的镇痛靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arindam Bhattacharjee其他文献
Arindam Bhattacharjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arindam Bhattacharjee', 18)}}的其他基金
The role of the nociceptor endocytosis in inflammatory pain
伤害感受器内吞作用在炎性疼痛中的作用
- 批准号:
10512357 - 财政年份:2022
- 资助金额:
$ 31.17万 - 项目类别:
The Role of the Nociceptor Endocytosis in Inflammatory Pain
伤害感受器内吞作用在炎性疼痛中的作用
- 批准号:
10634680 - 财政年份:2022
- 资助金额:
$ 31.17万 - 项目类别:
The role of the AP2 adaptor complex in inflammatory pain
AP2 接头复合物在炎性疼痛中的作用
- 批准号:
10119457 - 财政年份:2020
- 资助金额:
$ 31.17万 - 项目类别:
The role of the AP2 adaptor complex in inflammatory pain
AP2 接头复合物在炎性疼痛中的作用
- 批准号:
9920269 - 财政年份:2019
- 资助金额:
$ 31.17万 - 项目类别:
Feasibility and validation of an integrated newborn screening algorithm with targeted Next Generation Sequencing (tNGS) technology as part of a 2nd-tier test for Pompe and MPS I
作为 Pompe 和 MPS I 二级测试的一部分,采用靶向下一代测序 (tNGS) 技术的集成新生儿筛查算法的可行性和验证
- 批准号:
9909076 - 财政年份:2018
- 资助金额:
$ 31.17万 - 项目类别:
Confirmatory Screening for Congenital Non-Syndromic Genetic Hearing Loss Using Ta
使用 Ta 确认先天性非综合征性遗传性听力损失筛查
- 批准号:
8455986 - 财政年份:2013
- 资助金额:
$ 31.17万 - 项目类别:
Development and Validation of a High Risk and Potential Newborn Screening for Inh
高风险和潜在新生儿 Inh 筛查的开发和验证
- 批准号:
8524709 - 财政年份:2013
- 资助金额:
$ 31.17万 - 项目类别:
Ionic Mechanisms Underlying Dorsal Root Ganglion Excitability
背根神经节兴奋性的离子机制
- 批准号:
8661798 - 财政年份:2012
- 资助金额:
$ 31.17万 - 项目类别:
Ionic Mechanisms Underlying Dorsal Root Ganglion Excitability
背根神经节兴奋性的离子机制
- 批准号:
9067696 - 财政年份:2012
- 资助金额:
$ 31.17万 - 项目类别:
Ionic Mechanisms Underlying Dorsal Root Ganglion Excitability
背根神经节兴奋性的离子机制
- 批准号:
8535232 - 财政年份:2012
- 资助金额:
$ 31.17万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Development of a phenotypic screening assay for novel compounds that inhibit peripheral pain-sensing neurons
开发抑制外周痛觉神经元的新型化合物的表型筛选试验
- 批准号:
10650640 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Lymphocyte Antigen 6 (Ly6) Proteins: New Players in Chronic Pain
淋巴细胞抗原 6 (Ly6) 蛋白:慢性疼痛的新参与者
- 批准号:
10784019 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Development of positive TMEM97 modulators for treating neuropathic pain
开发用于治疗神经性疼痛的正 TMEM97 调节剂
- 批准号:
10642506 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Intra-Articular Drug Delivery Modulating Immune Cells in Inflammatory Joint Disease
关节内药物递送调节炎症性关节疾病中的免疫细胞
- 批准号:
10856753 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Mitochondrial regulation of nociceptor function
伤害感受器功能的线粒体调节
- 批准号:
10644865 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别: