Cargo Sorting and Intralumenal Vesicle Budding by the ESCRT Complexes
通过 ESCRT 复合体进行货物分选和腔内囊泡出芽
基本信息
- 批准号:8349733
- 负责人:
- 金额:$ 63.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseBindingC-terminalCell divisionCell membraneCellular biologyClathrinComplexCrystallizationCrystallographyCytokinesisCytosolDataDynaminElectron MicroscopyElectron Transport Complex IIIElectronsEndocytosisEndosomesEnergy TransferEukaryotaEukaryotic CellEventGuanosine TriphosphateHIV-1HydrolaseHydrolysisIntracellular TransportLysosomesMammalsMechanicsMediatingMembraneMembrane ProteinsMicroscopicMitochondriaMolecularMolecular ConformationMultivesicular BodyN-terminalNeckPathway interactionsPhasePlasma CellsPopulationProcessProteinsRecruitment ActivitySecretory VesiclesShapesSolutionsSorting - Cell MovementSpectrum AnalysisSpin LabelsStructureTechniquesTransport VesiclesVesicleViralVirusYeastsendosome membraneflexibilitymonomerphosphatidylinositol 3-phosphatepreventsimulationsingle molecule
项目摘要
Cargo Sorting and Intralumenal Vesicle Budding by the ESCRT Complexes
Membrane budding and fission is a fundamental process of eukaryotic cell biology. Endocytosis, the formation of intracellular transport and secretory vesicles, and mitochondrial fission are examples of inward budding. In the classical example of clathrin-mediated endocytosis, the cytosolic protein dynamin forms arrays on the outside of the membrane neck, and membrane fission is driven thermodynamically by the hydrolysis of GTP. The formation of multivesicular bodies (MVBs) is the prototypical example of outward budding. MVBs are formed during the maturation of endosomes destined to fuse with lysosomes, and mediate the sorting of ubiquitinated membrane proteins to the lysosome. Portions of the limiting membrane of the endosome are internalized to form intralumenal vesicles (ILVs). When the MVB fuses with the lysosome, ILV contents are degraded by lysosomal hydrolases. When ILVs are released through fusion with the plasma membrane, they are referred to as exosomes. The budding of enveloped viruses from the plasma membrane and cell division (cytokinesis) are other examples of outward budding events. Outward budding events in MVB formation, viral budding, and cytokinesis are directed from the cytosol. Since cytosol is in contact with the inside, not the outside of the neck of the nascent bud, the mechanics of membrane fission differ fundamentally from inward budding, and utilize a completely distinct protein machinery. A major breakthrough in understanding outward budding came from the identification in yeast of the ESCRT machinery responsible for MVB formation. The ESCRT machinery is conserved throughout eukaryotes, and many enveloped viruses of mammals use the ESCRT pathway to bud, including HIV-1. The closure of the membrane neck in cytokinesis also uses the ESCRT pathway.
The assembly of ESCRT complexes on endosomes is triggered by the presence of phosphatidylinositol 3-phosphate (PI(3)P) and ubiquitinated cargo proteins. ESCRT-I and II directly bind to cargo, and in turn recruit ESCRT-III. There are four ESCRT-III subunits in yeast, Vps2, Vps20, Vps24, and Snf7, together with two associated ESCRT-III-like proteins, Did2 and Vps60. ESCRT-III subunits exist in the cytosol as monomers, and assemble with each other on membranes in large multimeric arrays. ESCRT-II is a Y-shaped complex that contains two copies of the Vps25 subunit, which recruits ESCRT-III by directly binding to Vps20. Vps20 binds to Snf7, comprising a subcomplex of ESCRT-III. Snf7, in turn, directly binds to the Bro1 domain of the ESCRT-associated protein Alix (known as Bro1 in yeast). The Vps20:Snf7 complex recruits the Vps2:Vps24 subcomplex to form the complete ESCRT-III complex. A subset of ESCRT-III proteins directly bind to the N-terminal MIT domain of the AAA ATPase Vps4. Vps4 is a central player in the MVB pathway that is required for the disassembly of the ESCRT-III complex. ESCRT function can be conceptually separated into two phases: cargo recruitment and concentration, followed by membrane invagination and budding. The long term objectives of this project are to: 1) determine the structures of ESCRT complexes by x-ray crystallography, abetted where necessary by electron microscopy, hydrodynamics, molecular simulations, and small angle x-ray scattering; 2) to determine how ESCRTs assemble on membranes containing PI(3)P and cargo using binding and spectroscopic techniques; and 3) to study the mechanism of ILV formation by a microscopic, spectroscopic, and structure/function approaches.
ESCRT-I is a heterotetramer of Vps23, Vps28, Vps37, and Mvb12. The crystal structures of the core complex and the UEV and Vps28 C-terminal (CTD) domains have been determined, but internal flexibility has prevented crystallization of intact ESCRT-I. Over the past FY, we have characterized the structure of ESCRT-I in solution by simultaneous structural refinement against small angle x-ray scattering (SAXS) and double electron-electron resonance (DEER) spectroscopy of spin labeled complexes. An ensemble of at least six structures, comprising an equally populated mixture of closed and open conformations, was necessary to fit all of the data. This structural ensemble was cross-validated against single molecule Frster resonance energy transfer (FRET) spectroscopy, which suggested the presence of a continuum of open states. ESCRT-I in solution thus appears to consist of a 50 % population of one or a few related closed conformations, with the other 50 % populating a continuum of open conformations. These conformations provide references points for the structural pathway by which ESCRT-I induces membrane buds.
通过 ESCRT 复合体进行货物分选和腔内囊泡出芽
膜出芽和分裂是真核细胞生物学的基本过程。内吞作用、细胞内运输和分泌囊泡的形成以及线粒体裂变是向内出芽的例子。在网格蛋白介导的内吞作用的经典例子中,胞浆蛋白动力在膜颈的外侧形成阵列,并且膜裂变由 GTP 的水解热力学驱动。多泡体(MVB)的形成是向外出芽的典型例子。 MVB 是在内体成熟过程中形成的,注定要与溶酶体融合,并介导泛素化膜蛋白向溶酶体的分选。内体的部分限制膜被内化形成腔内囊泡(ILV)。当 MVB 与溶酶体融合时,ILV 内容物被溶酶体水解酶降解。当 ILV 通过与质膜融合释放时,它们被称为外泌体。有包膜病毒从质膜出芽和细胞分裂(细胞分裂)是向外出芽事件的其他例子。 MVB 形成、病毒出芽和胞质分裂中的向外出芽事件是由细胞质指导的。由于胞质溶胶与新生芽的颈部内部而不是外部接触,因此膜裂变的机制与向内出芽根本不同,并利用完全不同的蛋白质机制。理解外芽的重大突破来自于酵母中负责 MVB 形成的 ESCRT 机制的鉴定。 ESRT 机制在真核生物中是保守的,许多哺乳动物的有包膜病毒都使用 ESRT 途径来萌芽,包括 HIV-1。胞质分裂中膜颈的闭合也使用 ESCRT 途径。
ESCRT 复合物在内体上的组装是由磷脂酰肌醇 3-磷酸 (PI(3)P) 和泛素化货物蛋白的存在触发的。 ESCRT-I 和 II 直接与货物结合,进而招募 ESCRT-III。酵母中有四个 ESCRT-III 亚基:Vps2、Vps20、Vps24 和 Snf7,以及两个相关的 ESCRT-III 样蛋白:Did2 和 Vps60。 ESCRT-III 亚基作为单体存在于细胞质中,并在膜上以大型多聚体阵列彼此组装。 ESCRT-II 是一种 Y 形复合物,包含两个 Vps25 亚基拷贝,它通过直接与 Vps20 结合来招募 ESCRT-III。 Vps20 与 Snf7 结合,构成 ESCRT-III 的子复合物。 Snf7 反过来又直接与 ESCRT 相关蛋白 Alix 的 Bro1 结构域(在酵母中称为 Bro1)结合。 Vps20:Snf7 复合体招募 Vps2:Vps24 子复合体形成完整的 ESCRT-III 复合体。 ESCRT-III 蛋白的一个子集直接结合 AAA ATPase Vps4 的 N 端 MIT 结构域。 Vps4 是分解 ESCRT-III 复合物所需的 MVB 途径的核心参与者。 ESCRT 功能在概念上可以分为两个阶段:货物招募和浓缩,然后是膜内陷和出芽。该项目的长期目标是:1)通过 X 射线晶体学确定 ESCRT 复合物的结构,必要时辅以电子显微镜、流体动力学、分子模拟和小角度 X 射线散射; 2) 使用结合和光谱技术确定 ESCRT 如何在含有 PI(3)P 和货物的膜上组装; 3)通过微观、光谱和结构/功能方法研究ILV形成机制。
ESCRT-I 是 Vps23、Vps28、Vps37 和 Mvb12 的异四聚体。核心复合物以及 UEV 和 Vps28 C 末端 (CTD) 结构域的晶体结构已确定,但内部柔性阻碍了完整 ESCRT-I 的结晶。在过去的一个财年中,我们通过对自旋标记复合物的小角 X 射线散射 (SAXS) 和双电子-电子共振 (DEER) 光谱同时进行结构精修,表征了溶液中 ESCRT-I 的结构。为了拟合所有数据,需要一个至少由六个结构组成的整体,其中包括同等数量的封闭和开放构象的混合物。这种结构整体与单分子弗斯特共振能量转移(FRET)光谱进行了交叉验证,这表明存在连续的开放态。因此,溶液中的 ESCRT-I 似乎由一个或几个相关闭合构象的 50% 群体组成,另外 50% 则由开放构象的连续体组成。这些构象为 ESCRT-I 诱导膜芽的结构途径提供了参考点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Hurley其他文献
James Hurley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Hurley', 18)}}的其他基金
Cargo Sorting and Intralumenal Vesicle Budding by the ESCRT Complexes
通过 ESCRT 复合体进行货物分选和腔内囊泡出芽
- 批准号:
7967348 - 财政年份:
- 资助金额:
$ 63.14万 - 项目类别:
Cargo Sorting and Intralumenal Vesicle Budding by the ESCRT Complexes
通过 ESCRT 复合体进行货物分选和腔内囊泡出芽
- 批准号:
8553444 - 财政年份:
- 资助金额:
$ 63.14万 - 项目类别:
Structural and Functional Studies of Ubiquitin Binding Domains
泛素结合域的结构和功能研究
- 批准号:
8349735 - 财政年份:
- 资助金额:
$ 63.14万 - 项目类别:
Structural Mechanisms in Retrograde Protein Traffic to the Golgi
逆行蛋白质运输至高尔基体的结构机制
- 批准号:
8349737 - 财政年份:
- 资助金额:
$ 63.14万 - 项目类别:
Mechanisms of Diacylglycerol Signaling Through C1 Domain Proteins
通过 C1 结构域蛋白的二酰甘油信号传导机制
- 批准号:
8349736 - 财政年份:
- 资助金额:
$ 63.14万 - 项目类别:
Structural Studies of Alix and ESCRT Complexes in HIV-1 Budding
HIV-1 出芽中 Alix 和 ESCRT 复合物的结构研究
- 批准号:
8349734 - 财政年份:
- 资助金额:
$ 63.14万 - 项目类别:
Cargo Sorting and Intralumenal Vesicle Budding by the ESCRT Complexes
通过 ESCRT 复合体进行货物分选和腔内囊泡出芽
- 批准号:
7734078 - 财政年份:
- 资助金额:
$ 63.14万 - 项目类别:
Structural Mechanisms in Retrograde Protein Traffic to the Golgi
逆行蛋白质运输至高尔基体的结构机制
- 批准号:
7734082 - 财政年份:
- 资助金额:
$ 63.14万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Determining the role of retromer and P4-ATPase interactions in cellular functions
确定逆转录酶和 P4-ATP 酶相互作用在细胞功能中的作用
- 批准号:
10677963 - 财政年份:2023
- 资助金额:
$ 63.14万 - 项目类别:
Role of Borrelia Lpt Homologs in Surface Lipoprotein Secretion
疏螺旋体 Lpt 同源物在表面脂蛋白分泌中的作用
- 批准号:
10742481 - 财政年份:2023
- 资助金额:
$ 63.14万 - 项目类别:
Leveraging protein dynamics to drug filovirus protein-nucleic acid interactions using simulations and experiments
通过模拟和实验利用蛋白质动力学来药物丝状病毒蛋白质-核酸相互作用
- 批准号:
10680759 - 财政年份:2022
- 资助金额:
$ 63.14万 - 项目类别:
Perlecan Domain V as a therapeutic VCID strategy for the clearance of amyloid beta from the brain in cerebral amyloid angiopathy
Perlecan 结构域 V 作为治疗性 VCID 策略,用于清除大脑淀粉样血管病中的β淀粉样蛋白
- 批准号:
10372826 - 财政年份:2022
- 资助金额:
$ 63.14万 - 项目类别:
Myosin-2 function in the enterocyte terminal web
肌球蛋白 2 在肠细胞终末网中的功能
- 批准号:
10370436 - 财政年份:2021
- 资助金额:
$ 63.14万 - 项目类别: