Signaling Mechanism of the DNA Replication Checkpoint
DNA 复制检查点的信号传导机制
基本信息
- 批准号:9695226
- 负责人:
- 金额:$ 25.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBindingBiochemical GeneticsBiological ModelsCell CycleCell DeathCell SurvivalClinicalCytokinesisDNA DamageDNA biosynthesisDNA replication forkDNA-Directed DNA PolymeraseDataDefectEndogenous FactorsEnzymesEukaryotaExogenous FactorsFission YeastGeneticGenetic ScreeningGenome StabilityGenomic InstabilityGoalsHumanIn VitroIndividualKnowledgeLinkMalignant NeoplasmsMapsMethodsMissionModelingMolecularMutationOutcomePathway interactionsPharmaceutical PreparationsPhosphorylationPhosphorylation SitePlayProteinsPublic HealthPublicationsPublishingResearchRestRibonucleotide Reductase InhibitorRoleSeriesSignal PathwaySignal TransductionSterolsStressSurveysSystemTestingTherapeuticUnited States National Institutes of HealthWorkYeastsbasecell killingdisabilitygenetic approachgenome integrityhelicasehydroxyureain vivoinnovationinsightmutantnovelpublic health relevancereplication stressresponsesensortumorigenesis
项目摘要
DESCRIPTION (provided by applicant):
Project Summary DNA replication checkpoint is a highly conserved signaling pathway in all eukaryotes. It plays a critical role in maintaining the DNA synthesis function of perturbed replication forks under stress. Perturbed forks, if undetected by the checkpoint, undergo catastrophic collapse resulting in chromosomal DNA damage or even cell death. Defects in the pathway are linked to genome instability and cancer. However, despite its importance and intense research efforts, our understanding of the mechanisms involved in the initiation of checkpoint signaling at the pertubed forks, fork stabilization, and cell survival remains incomplete. The long-term goal of our research is to understand the molecular interactions between the replication machinery and the checkpoint pathways for proper checkpoint signaling and fork protection by using S. pombe as the model system. The objective here is to define the important checkpoint functions of DNA polymerase Pol �, the replicative helicase CMG, and the sterol synthesis enzyme Erg11 (Cyp51 in humans). Our central hypotheses are (1) that the activated replication checkpoint targets Pol � and CMG on the leading strand to suppress the fork progression under stress and hence protect the perturbed forks against catastrophic collapse, and (2) that Erg11 may function as a new sensor of the stress induced by the ribonucleotide reductase inhibitor hydroxyurea. Our hypotheses are the results of our strong preliminary data and recent publications. The rationale for the proposed research is that understanding the checkpoint functions of these essential enzymes will provide novel insights into how the replication checkpoint signaling is initiated and how perturbed forks are stabilized for cell survival, the two most prominent questions in the field. Guided by strong preliminary data, these hypotheses will be tested by pursuing three specific aims: (1) determine how Pol � is regulated by the checkpoint for stabilization of perturbed forks; (2) discover the major target() of the replication checkpoint for cell survival under stress; and (3) define the functions of Erg11
in checkpoint signaling and hydroxyurea-induced cytokinesis arrest. Under the first two aims, we will conduct in vitro and in vivo studies to investigate how the activties of Pol � and CMG are regulated by the chekcpoint for fork protection and cell survival. We will also systematically analyze all replication proteins in fission yeast in order to identify the major checkpoint target() that may work alone or redundantly with the known targets. Under the third aim, the newly identified functions of Erg11 in checkpoint signaling and cytokinesis will be characterized. The approach is innovative, because it aims to provide a comprehensive molecular mechanism for checkpoint signaling in a model system representative of higher eukaryotes. The proposal is significant, because it is expected to vertically advance and expand our understanding of how checkpoint signaling is generated at perturbed forks and how perturbed forks are protected. Ultimately, such knowledge will advance our understanding of how genomic integrity is maintained and how it can be disrupted in all eukaryotes.
描述(由申请人提供):
项目摘要DNA复制检查点是所有真核生物中高度配置的信号通路。它在保持压力下扰动复制叉的DNA合成功能方面起着关键作用。如果没有检查点未发现灾难性的叉子,则会发生灾难性塌陷,从而导致染色体DNA损伤甚至细胞死亡。途径中的缺陷与基因组不稳定性和癌症有关。然而,要求其重要性和强烈的研究工作,我们对受叉叉,叉稳定和细胞存活的检查点信号涉及的机制的理解仍然不完整。我们研究的长期目标是了解复制机制与检查点途径之间的分子相互作用,以使用S. Pombe作为模型系统,以进行适当的检查点信号传导和叉子保护。这里的目的是定义DNA聚合酶pol的重要检查点功能,复制性解旋酶CMG和固醇合成酶ERG11(人类中的CYP51)。 Our central hypotheses are (1) that the activated replication checkpoint targets Pol � and CMG on the leading strand to suppress the fork progression under stress and hence protect the perturbed forks against catastrophic collapse, and (2) that Erg11 may function as a new sensor of the stress induced by the ribonucleotide reduces inhibitor hydroxyurea.我们的假设是我们强大的初步数据和最新出版物的结果。拟议研究的理由是,了解这些基本酶的检查点功能将提供有关如何启动复制检查点信号传导以及如何稳定扰动叉以实现细胞存活的新见解,这是该领域中最突出的两个问题。在强大的初步数据的指导下,这些假设将通过追求三个具体目的来检验:(1)确定POL如何受到稳定的扰动叉子的检查点; (2)在压力下发现细胞存活的复制检查点的主要目标(); (3)定义ERG11的功能
在检查点信号传导和羟基脲诱导的细胞因子停滞。在前两个目标下,我们将在体外和体内进行研究,以研究POL和CMG的活性如何受CHEKCPORT的调节,以进行叉子保护和细胞存活。我们还将系统地分析裂变酵母中的所有复制蛋白,以识别可能单独或与已知靶标有用的主要检查点目标()。在第三个目标下,将表征ERG11新近确定的ERG11功能。该方法具有创新性,因为它旨在在代表较高真核生物的模型系统中提供一种全面的分子机制,用于检查点信号传导。该提案很重要,因为预计它将垂直提高并扩展我们对在扰动叉子上如何生成检查点信号的理解以及如何保护叉叉。最终,这种知识将提高我们对基因组完整性如何维持以及如何在所有真核生物中被破坏的理解。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inner nuclear membrane protein Lem2 facilitates Rad3-mediated checkpoint signaling under replication stress induced by nucleotide depletion in fission yeast.
在裂殖酵母中核苷酸耗尽诱导的复制应激下,内核膜蛋白 Lem2 促进 Rad3 介导的检查点信号传导。
- DOI:10.1016/j.cellsig.2015.12.009
- 发表时间:2016
- 期刊:
- 影响因子:4.8
- 作者:Xu,Yong-Jie
- 通讯作者:Xu,Yong-Jie
The Cell Killing Mechanisms of Hydroxyurea.
- DOI:10.3390/genes7110099
- 发表时间:2016-11-17
- 期刊:
- 影响因子:3.5
- 作者:Singh A;Xu YJ
- 通讯作者:Xu YJ
Novel Cell-Killing Mechanisms of Hydroxyurea and the Implication toward Combination Therapy for the Treatment of Fungal Infections.
羟基脲的新型细胞杀伤机制及其对治疗真菌感染的联合疗法的意义。
- DOI:10.1128/aac.00734-17
- 发表时间:2017
- 期刊:
- 影响因子:4.9
- 作者:Singh,Amanpreet;Agarwal,Ameeta;Xu,Yong-Jie
- 通讯作者:Xu,Yong-Jie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongjie Xu其他文献
Yongjie Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongjie Xu', 18)}}的其他基金
Signaling Mechanism of the DNA Replication Checkpoint
DNA 复制检查点的信号传导机制
- 批准号:
9001349 - 财政年份:2015
- 资助金额:
$ 25.9万 - 项目类别:
Signaling Mechanism of the DNA Replication Checkpoint
DNA 复制检查点的信号传导机制
- 批准号:
8818250 - 财政年份:2015
- 资助金额:
$ 25.9万 - 项目类别:
相似国自然基金
结合态抗生素在水产品加工过程中的消解机制与产物毒性解析
- 批准号:32302247
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ABHD6与AMPA受体结合位点的鉴定及该位点在AMPA受体转运和功能调控中的作用研究
- 批准号:32300794
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α-突触核蛋白与脂肪酸结合蛋白FABP3相互作用维持自身低聚体形态的机制研究
- 批准号:82301632
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于荧光共振能量转移机理构建多肽荧光探针用于可视化Zn2+结合SQSTM1/p62调节自噬在前列腺癌去势耐受中的作用机制
- 批准号:82303568
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
手性氢键供体与阴离子结合催化乙烯基醚的立体选择性阳离子聚合
- 批准号:22301279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:
10724152 - 财政年份:2023
- 资助金额:
$ 25.9万 - 项目类别:
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 25.9万 - 项目类别:
Molecular Mechanisms that Control mRNA Decapping in Biological Condensates
控制生物浓缩物中 mRNA 脱帽的分子机制
- 批准号:
10577994 - 财政年份:2023
- 资助金额:
$ 25.9万 - 项目类别:
microRNA-Regulated Mechanisms Essential for Structural Plasticity of Drosophila Glutamatergic Synapses
microRNA 调控机制对于果蝇谷氨酸突触的结构可塑性至关重要
- 批准号:
10792326 - 财政年份:2023
- 资助金额:
$ 25.9万 - 项目类别: