Incorporating Prior Knowledge of Surgical Devices in CBCT-Guided Interventions

将手术器械的先验知识纳入 CBCT 引导干预中

基本信息

  • 批准号:
    8588925
  • 负责人:
  • 金额:
    $ 19.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Cone-beam CT (CBCT) is finding increased use in image-guided procedures, including orthopaedic surgeries such as spine fusion and total hip arthroplasty. Since intraoperative imaging is particularly likely to include surgical devices (e.g. tools, implants, or prostheses) within the tomographic field-of-view and these components have known composition, size, and shape, there is a unique opportunity to integrate such information in a re- construction approach. The investigators have developed a novel model-based approach called known- component reconstruction (KCR) that leverages known attenuation distributions, modeling an object comprised of known components (with unknown pose), as well as an unknown background anatomy. This is a new paradigm for incorporating prior object knowledge into a reconstruction framework where the algorithm jointly estimates both the background attenuation and the registers the known components. The technique is particularly well-suited to missing data and low signal-to-noise, as is common in interventional imaging due to metallic devices. Traditional reconstruction approaches are prone to severe metal streak artifacts (especially at low doses) with the poorest image quality in locations proximal to the device, which is often precisely the area of interest with the greatest image quality demands (e.g. visualization of nearby critical structures or interfaces of implants). Preliminary studies demonstrate that KCR is able to essentially eliminate artifacts associated with metal and allows for visualization of the object right up to the boundary of the tool or implant. We hypothesize tha an integrated system based on a generalized KCR framework with a library of known device components can provide artifact-free reconstructions in proximity to surgical implants, facilitatin high- precision device placement and dose reduction protocols in interventional CBCT. The following Specific Aims are proposed: 1.) Build a generalized analytic framework for KCR. Studies include development of a complete physics model for interventional CBCT, leveraging KCR's unique integration of component know- ledge, and adopting a deformable transformation model to allow for a broad class of inexactly known components (e.g., fixation rods in spine fusions that are deformed during a procedure to enforce a specific spine curvature). 2.) Create an integrated system for KCR. The development includes methods for generation of high- fidelity parameterized component models from CAD files or physical devices, computationally efficient algorithms and hardware, and tools for assessment of geometric accuracy in device placement from the component registration computed jointly in KCR. 3.) Evaluate KCR in pre-clinical experiments and simulated procedures. Work includes a systematic series of experiments using phantoms and cadavers with multiple components, deformable constructs, and conditions that stress the limits of noise, dose, object size, and implant size. Outcome measures will include quantitative imaging performance metrics, physician scoring, and registration error analysis, as well as the relation of these metrics to minimum-dose acquisition protocols.
描述(由申请人提供):锥束CT(CBCT)正在发现在图像引导程序中的使用增加,包括骨科手术,例如脊柱融合和总髋关节置换术。由于术中成像尤其可能包括在层析成像视野内的手术设备(例如工具,植入物或假体),并且这些组件具有已知的组成,大小和形状,因此有一个独特的机会,可以将此类信息集成到重新构造方法中。研究人员开发了一种基于新型模型的方法,称为已知成分重建(KCR),该方法利用已知的衰减分布,建模由已知成分(具有未知姿势)组成的对象以及未知的背景解剖。这是将先前的对象知识纳入重建框架中的新范式,该算法共同估算背景衰减和寄存器的已知组件。该技术特别适合缺少数据和低信噪比,这在金属设备引起的介入成像中很常见。传统的重建方法容易发生严重的金属条纹伪像(尤其是在低剂量下),其位置的图像质量最差,该设备的位置通常是最大的图像质量需求(例如,附近的关键结构或植入物的界面的可视化图像)。初步研究表明,KCR能够基本上消除与金属相关的伪影,并允许对物体可视化,直到工具或植入物的边界。我们假设基于具有已知设备组件库的广义KCR框架的集成系统可以提供无伪影的重建,以靠近手术植入物,可加方素抑制素的高精度设备放置和减少剂量的介入方案。提出了以下特定目标:1。)为KCR构建广义分析框架。研究包括开发用于干预CBCT的完整物理模型,利用KCR的独特组成部分集成,并采用可变形的转换模型,以允许在棘突中具有广泛的固定成分(例如,在脊柱融合中的固定杆(例如,在过程中都会在过程中都变形以强化特定的脊柱曲率))。 2.)为KCR创建一个集成系统。该开发包括从CAD文件或物理设备,计算有效的算法和硬件中生成高保真参数化组件模型的方法,以及评估来自KCR中共同计算的组件注册的设备位置中几何准确性的工具。 3.)评估KCR进行临床前实验和模拟程序。工作包括一系列系统的实验,使用具有多个组件,可变形构建体以及压力噪声,剂量,对象大小和植入物尺寸的条件的幻象和尸体。结果指标将包括定量成像性能指标,医师评分和注册误差分析,以及这些指标与最低剂量获取方案的关系。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deformable Known Component Model-Based Reconstruction for Coronary CT Angiography.
基于可变形已知组件模型的冠状动脉 CT 血管造影重建。
Integration of Component Knowledge in Penalized-Likelihood Reconstruction with Morphological and Spectral Uncertainties.
具有形态和光谱不确定性的惩罚似然重建中的成分知识的整合。
Generalized Least-Squares CT Reconstruction with Detector Blur and Correlated Noise Models.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOSEPH Webster STAYMAN其他文献

JOSEPH Webster STAYMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOSEPH Webster STAYMAN', 18)}}的其他基金

Task-Driven 3D Interventional Imaging
任务驱动的 3D 介入成像
  • 批准号:
    9899984
  • 财政年份:
    2019
  • 资助金额:
    $ 19.64万
  • 项目类别:
Task-Driven 3D Interventional Imaging
任务驱动的 3D 介入成像
  • 批准号:
    10382316
  • 财政年份:
    2019
  • 资助金额:
    $ 19.64万
  • 项目类别:
Spectral-spatial filtering for efficient multi-material decomposition in x-ray CT
用于 X 射线 CT 中高效多材料分解的谱空间滤波
  • 批准号:
    9751293
  • 财政年份:
    2018
  • 资助金额:
    $ 19.64万
  • 项目类别:
Monitoring of fractures with internal fixators using weight-bearing quantitative cone beam CT
使用负重定量锥形束CT监测内固定器骨折
  • 批准号:
    9902426
  • 财政年份:
    2018
  • 资助金额:
    $ 19.64万
  • 项目类别:
Monitoring of fractures with internal fixators using weight-bearing quantitative cone beam CT
使用负重定量锥形束CT监测内固定器骨折
  • 批准号:
    9603931
  • 财政年份:
    2018
  • 资助金额:
    $ 19.64万
  • 项目类别:
Task-driven dynamic beam modulation for high-performance,low-dose CT.
用于高性能、低剂量 CT 的任务驱动动态光束调制。
  • 批准号:
    8926430
  • 财政年份:
    2014
  • 资助金额:
    $ 19.64万
  • 项目类别:
Task-driven dynamic beam modulation for high-performance,low-dose CT.
用于高性能、低剂量 CT 的任务驱动动态光束调制。
  • 批准号:
    8733325
  • 财政年份:
    2014
  • 资助金额:
    $ 19.64万
  • 项目类别:
Incorporating Prior Knowledge of Surgical Devices in CBCT-Guided Interventions
将手术器械的先验知识纳入 CBCT 引导干预中
  • 批准号:
    8445513
  • 财政年份:
    2013
  • 资助金额:
    $ 19.64万
  • 项目类别:
An Integrated CT-based Image-Guided Neurosurgical System
基于 CT 的集成图像引导神经外科系统
  • 批准号:
    6886410
  • 财政年份:
    2005
  • 资助金额:
    $ 19.64万
  • 项目类别:
Interactive intraoperative imaging with cone beam CT
锥形束 CT 交互式术中成像
  • 批准号:
    7228457
  • 财政年份:
    2004
  • 资助金额:
    $ 19.64万
  • 项目类别:

相似国自然基金

采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
  • 批准号:
    51779168
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
采用数值计算求解一类半代数系统全部整数解
  • 批准号:
    11671377
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
采用pinball loss的MEE算法研究
  • 批准号:
    11401247
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
  • 批准号:
    41301419
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
采用ε近似算法的盲信道均衡
  • 批准号:
    60172058
  • 批准年份:
    2001
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目

相似海外基金

Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
  • 批准号:
    10725500
  • 财政年份:
    2023
  • 资助金额:
    $ 19.64万
  • 项目类别:
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
  • 批准号:
    10593480
  • 财政年份:
    2023
  • 资助金额:
    $ 19.64万
  • 项目类别:
Tele-Sox: A Tele-Medicine solution based on wearables and gamification to prevent Venous thromboembolism in Oncology Geriatric Patients
Tele-Sox:基于可穿戴设备和游戏化的远程医疗解决方案,用于预防肿瘤老年患者的静脉血栓栓塞
  • 批准号:
    10547300
  • 财政年份:
    2023
  • 资助金额:
    $ 19.64万
  • 项目类别:
Enhancing Drug Discovery Research by Free Energy Modeling
通过自由能建模加强药物发现研究
  • 批准号:
    10730788
  • 财政年份:
    2023
  • 资助金额:
    $ 19.64万
  • 项目类别:
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
  • 批准号:
    10643313
  • 财政年份:
    2023
  • 资助金额:
    $ 19.64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了