Temperature-Dependent Gating of Vanilloid Receptors
香草酸受体的温度依赖性门控
基本信息
- 批准号:8880531
- 负责人:
- 金额:$ 12.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2017-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAdverse effectsAffectAfferent NeuronsAmino Acid SequenceAnalgesicsBiological ProcessBiophysicsCell Cycle KineticsChimera organismComplexCouplingCuesDataDegenerative polyarthritisDependenceDetectionDevelopmentDiabetes MellitusDiseaseDrug TargetingDrug effect disorderEsthesiaEventExhibitsFamilyFundingGoalsHeatingHerpes Simplex InfectionsHomologous GeneIndividualInflammationInstitute of Medicine (U.S.)Ion ChannelIon Channel GatingKineticsKnowledgeLinkMalignant NeoplasmsModelingMolecularMolecular BiologyMutagenesisN-terminalNerve EndingsNociceptorsPainPain managementPathologyPathway interactionsPatientsPeripheralPeripheral NervesPeripheral nerve injuryPhenotypePhysiologicalPlayProteinsPublicationsRecombinantsResearchRoleSiteStimulusSymptomsSystemTRP channelTRPV1 geneTechniquesTemperatureTemperature SenseTestingThermal HyperalgesiasTimeUnited States National Institutes of HealthVanilloidVariantWorkbasecapsaicin receptorcostdetectordrug developmentdrug discoveryinsightmedical attentionmembermolecular sitenovelpatch clampprotein functionpublic health relevancereceptorsensorstoichiometry
项目摘要
DESCRIPTION (provided by applicant): Thermal sensation and pain use ion channels for detection of environmental cues. Thermal TRP channels, members of the transient receptor potential superfamily, are the principal detectors of thermal stimuli. These channels have a steep temperature dependence compared to other proteins. The long term goal of this research is to understand how the channels obtain their strong thermal sensitivity. We will focus on the vanilloid receptor TRPV1, a founding member of the thermal TRP subfamily. The channel plays a pivotal role in pain transduction and is abundantly expressed in peripheral sensory neurons where it appears to act as a gateway for detection and integration of noxious stimuli. Our previous research made progress in identifying the origin of thermal sensitivity of TRPV1, and showed that the channel contains modular thermal sensor domains in its N-terminus. We propose to take advantage of these findings to perform a comprehensive biophysical study on the fundamental mechanisms of temperature-dependent gating, using approaches that have proven successful for understanding other types of ion channel gating. Aim 1 focuses on the physical basis of thermal sensors. The hypothesis to be tested is that the N-terminal domain is responsible for distinct temperature phenotypes of TRPV1 homologs. By dissecting the molecular determinants of the phenotypic differences, we will identify the residues and subdomains contributing to temperature sensing. Aim 2 examines the interactions between sensing domains and subunits. We will test the cooperativity of thermal sensing between subunits, delineate the contribution of individual subunit thermal sensing events to channel opening, and probe the influence of thermal sensitivity by other stimuli. The results will unravel complex mechanisms by which TRPV1 achieves a dynamic thermal sensitivity for its physiological function over broad temperature ranges. Aim 3 addresses the coupling of the thermal sensor domain with the channel gate. We will test several regions throughout the channel and determine the allosteric mechanisms by which they control temperature activation. The results will illuminate the temperature-gating pathway in TRPV1 that links thermal sensing and gating. Our approach involves patch-clamp recording from recombinant channels in heterologous expression systems, combined with fast temperature stimulation and kinetic analysis to unravel the molecular events occurring during activation, along with mutagenesis to identify functional domains of the receptor. Thermal TRP channels are attractive ion-channel targets for the development of novel analgesic drugs that could act peripherally at nociceptors where pain is generated. With insight into how the channels function, the proposed studies will help prompt the selective drug development for treatment of pathologies such as thermal hyperalgesia due to inflammation, peripheral nerve injury, diabetes and herpes simplex.
描述(由申请人提供):用于检测环境线索的热感觉和疼痛的离子通道。热TRP通道是瞬态受体电位超家族的成员,是热刺激的主要检测器。与其他蛋白质相比,这些通道具有陡峭的温度依赖性。这项研究的长期目标是了解渠道如何获得强烈的热敏感性。我们将重点关注香草受体TRPV1,这是热TRP亚家族的创始成员。该通道在疼痛转导中起关键作用,并且在外围感觉神经元中大量表达,在该神经元中似乎充当了有害刺激的检测和整合的门户。我们以前的研究在识别TRPV1的热灵敏度的起源方面取得了进展,并表明该通道在其N末端中包含模块化的热传感器结构域。我们建议利用这些方法对温度依赖性门的基本机制进行全面的生物物理研究,并使用证明成功理解其他类型的离子通道门控的方法进行了全面的生物物理研究。 AIM 1专注于热传感器的物理基础。要测试的假设是N末端结构域负责TRPV1同源物的不同温度表型。通过解剖表型差异的分子决定因素,我们将确定导致温度传感的残基和亚域。 AIM 2检查了传感域和亚基之间的相互作用。我们将测试亚基之间的热感应的协同度,描述单个亚基热感应事件对通道开放的贡献,并探测其他刺激的热敏感性的影响。结果将揭示TRPV1在广泛温度范围内实现其生理功能的动态热敏感性的复杂机制。 AIM 3解决了热传感器域与通道门的耦合。我们将在整个通道中测试几个区域,并确定它们控制温度激活的变构机制。结果将照亮与热感应和门控连接的TRPV1中的温度门控途径。我们的方法涉及从异源表达系统中重组通道的斑块钳记录,并结合快速温度刺激和动力学分析,以揭示激活过程中发生的分子事件,以及诱变以识别受体的功能结构域。热TRP通道是有吸引力的离子通道靶标,用于开发新型镇痛药,这些药物可能在产生疼痛的伤害感受器上作用。通过深入了解通道的功能,拟议的研究将有助于促使选择性药物开发,以治疗诸如炎症,周围神经损伤,糖尿病和单纯疱疹引起的诸如热痛觉过敏的病理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FENG QIN其他文献
FENG QIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FENG QIN', 18)}}的其他基金
Mechanisms of Heat Sensing by Nociceptive Vanilloid Receptors
伤害性香草素受体的热感应机制
- 批准号:
10334523 - 财政年份:2020
- 资助金额:
$ 12.75万 - 项目类别:
Mechanisms of Heat Sensing by Nociceptive Vanilloid Receptors
伤害性香草素受体的热感应机制
- 批准号:
9973924 - 财政年份:2020
- 资助金额:
$ 12.75万 - 项目类别:
Mechanisms of Heat Sensing by Nociceptive Vanilloid Receptors
伤害性香草素受体的热感应机制
- 批准号:
10581558 - 财政年份:2020
- 资助金额:
$ 12.75万 - 项目类别:
Temperature-Dependent Gating of Vanilloid Receptors
香草酸受体的温度依赖性门控
- 批准号:
8642659 - 财政年份:2013
- 资助金额:
$ 12.75万 - 项目类别:
Temperature-Dependent Gating of Vanilloid Receptors
香草酸受体的温度依赖性门控
- 批准号:
8421285 - 财政年份:2013
- 资助金额:
$ 12.75万 - 项目类别:
Temperature-Dependent Gating of Vanilloid Receptors
香草酸受体的温度依赖性门控
- 批准号:
8813597 - 财政年份:2013
- 资助金额:
$ 12.75万 - 项目类别:
Mechanisms of Heat Activation and Multimodal Functions of VR1 Receptor Channels
VR1受体通道的热激活机制和多模态功能
- 批准号:
8073878 - 财政年份:2010
- 资助金额:
$ 12.75万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Sleep-Wake Cycles of Individuals with Inflammatory Bowel Disease
炎症性肠病患者的睡眠-觉醒周期
- 批准号:
10604701 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
A Biobehavioral Intervention to Reduce Adverse Outcomes in Young Adult Testicular Cancer Survivors
减少年轻成年睾丸癌幸存者不良后果的生物行为干预
- 批准号:
10736501 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Implementing Evidence-Based Treatment for Common Mental Disorders in HIV Clinics in Ukraine
在乌克兰艾滋病毒诊所对常见精神疾病实施循证治疗
- 批准号:
10762576 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Transovarial transmission of yersinia pestis in fleas
跳蚤中鼠疫耶尔森氏菌的跨卵巢传播
- 批准号:
10727534 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别: