Regulation of Forebrain Neurogenesis by the Energy Sensor AMP Kinase

能量传感器 AMP 激酶对前脑神经发生的调节

基本信息

  • 批准号:
    8370194
  • 负责人:
  • 金额:
    $ 34.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Mammalian cortical development is a complex and tightly regulated process. While it is known that humoral and transcriptional regulation generates the cellular diversity in the mammalian telencephalon, a relatively unexplored area is whether the progenitor populations are also metabolically distinct and the extent to which metabolic regulation of precursor cells contribute to neurogenesis in the telencephalon. AMP- activated protein kinase (AMPK) is an energy sensor and plays a central role in energy and redox homeostasis in all eukaryotic cells. Recent studies show, that AMPK controls many fundamental processes including regulation of cell structures, polarity, cell division, migration and normal growth and development of organisms. In this application we will test our hypothesis that AMPK regulates neurogenesis in the telencephalon though its energy sensing functions. AMPK exists as a heterotrimer of catalytic ¿ and regulatory ¿ and ? subunits. Mammals express 2¿, 2¿ and 3? subunits. Not much is known about AMPK function in neural cells. Studies in Drosophila demonstrate that AMPK is necessary for maintaining mitotic competence of neural precursors and loss of AMPK function also causes progressive neurodegeneration. Our published study (Dev. Cell, 2009) in the germline ¿1 mutant mice shows massive apoptosis, which was primarily restricted to the intermediate progenitors (IPCs and their progeny) of developing telencephalon in the prenatal embryo, while in the postnatal brain apoptosis was restricted to the external granule layer of the developing cerebellum. In vitro analysis showed cell-intrinsic G2M-specific defects and apoptosis of ¿1 mutant neural precursors. In this application, we will focus on the telencephalon. With the help of our recently generated ¿1 conditional knockout mouse and other transgenic mice, we will conduct bioenergetics studies to examine whether metabolic uniqueness of dorsal and ventral telencephalon IPCs render them more sensitive to loss of AMPK function during their proliferation, survival, migration and differentiation (Aim1). We will examine regional control of neurogenesis by ¿1 in the dorsal and ventral telencephalon in vivo, by using region-specific Cre lines to reduce ¿1 function (Aim2). In Aim3, we will use three cutting edge technologies to investigate region-specific tissue bioenergetics and metabolomics in the intact brain in vivo. We expect that our studies will provide new dimensions to our understanding of cortical development in the light of cellular metabolism. Identification of novel AMPK effectors and AMPK subunit-specific small molecule modulators could one day potentially lead to novel therapeutics for neurodegenerative and metabolic diseases. PUBLIC HEALTH RELEVANCE: AMPK is an important mediator of glucose sensing and nutrient metabolism in the CNS. Inappropriate AMPK activation in the brain causes deleterious effects. Because the rapidly developing brain is vulnerable to nutrient deficiency or overabundance, gestational diabetes or malnutrition (that cause birth defects and memory deficits), is likely to trigger improper AMPK activation in the fetus. This could lead to cortical malformations and developmental defects in the fetal brain and cognitive deficits in children. Thus, AMPK modulating drugs could have a direct effect on fetal corticogenesis. In fact, one mechanism by which the widely prescribed drug metformin works in Type2 diabetes is by its action on AMPK. Little is known however, whether metformin has any direct effect on AMPK activation in the fetal brain. Understanding the subunit-specific functions of AMPK would lead to interest in developing AMPK heterotrimer-specific AMPK modulators. Moreover, our preliminary studies in the AMPK¿1 mutant mouse show preferential loss of IPCs that give rise to interneurons. Understanding the mechanisms that regulate interneuron generation and migration is important as the complexity of the primate brain is attributed to the massive proliferation of these progenitors and defective interneuron development and migration is correlated with various neurological disorders like schizophrenia, epilepsy and lissencephaly. Our studies will open exciting new avenues of research in identification of novel AMPK subunit-specific small molecule modulators which could potentially lead to novel therapeutics for neurodegenerative and metabolic diseases.
描述(由申请人提供):哺乳动物皮质发育是一个复杂且严格调控的过程,虽然已知体液和转录调节产生哺乳动物端脑的细胞多样性,但相对未探索的领域是祖细胞群体是否在代谢上也具有独特性和多样性。前体细胞的代谢调节对端脑神经发生的贡献程度 AMP 激活蛋白激酶 (AMPK) 是一种能量传感器,在能量和氧化还原中发挥着核心作用。最近的研究表明,AMPK 控制着许多基本过程,包括细胞结构、极性、细胞分裂、迁移以及生物体正常生长和发育的调节。端脑虽然其能量传感功能作为催化的异三聚体存在。和监管和 ? 亚基表达 2¿ , 2¿关于神经细胞中的 AMPK 功能知之甚少。果蝇研究表明,AMPK 对于维持神经前体细胞的有丝分裂能力是必需的,而 AMPK 功能的丧失也会导致进行性神经变性(Dev. Cell,2009)。 )在种系 ¿ 1突变小鼠表现出大量细胞凋亡,主要局限于产前胚胎发育中的端脑的中间祖细胞(IPC及其后代),而在出生后的脑细胞凋亡则局限于发育中小脑的外部颗粒层。显示细胞固有的 G2M 特异性缺陷和 ¿ 1 突变神经前体 在这个应用程序中,我们将在我们最近生成的帮助下关注端脑。 1 条件敲除小鼠和其他转基因小鼠,我们将进行生物能学研究,以检查背侧和腹侧端脑 IPC 的代谢独特性是否使它们在增殖、存活、迁移和分化过程中对 AMPK 功能的丧失更加敏感(我们将检查)。神经发生的区域控制1 在体内的背侧和腹侧端脑中,通过使用区域特异性 Cre 系来减少 ¿在 Aim3 中,我们将使用三种尖端技术来研究体内完整大脑中的区域特异性组织生物能学和代谢组学,我们希望我们的研究将为我们理解皮质发育提供新的维度。新型 AMPK 效应子和 AMPK 亚基特异性小分子调节剂的鉴定有一天可能会带来神经退行性和代谢疾病的新疗法。 公共健康相关性:AMPK 是中枢神经系统中葡萄糖感应和营养代谢的重要介质,大脑中 AMPK 的不当激活会产生有害影响,因为快速发育的大脑容易受到营养缺乏或过多、妊娠期糖尿病或营养不良(导致出生)的影响。缺陷和记忆缺陷),可能会引发胎儿 AMPK 激活不当,这可能导致胎儿大脑皮质畸形和发育缺陷以及认知缺陷。因此,AMPK 调节药物可能对胎儿皮质生成产生直接影响。事实上,广泛使用的药物二甲双胍治疗 2 型糖尿病的一种机制是通过其对 AMPK 的作用,但目前尚不清楚二甲双胍是否具有任何直接作用。了解 AMPK 亚基特异性功能将引起人们对开发 AMPK 异源三聚体特异性 AMPK 调节剂的兴趣。 1 突变小鼠表现出优先损失产生中间神经元的 IPC,了解调节中间神经元生成和迁移的机制非常重要,因为灵长类动物大脑的复杂性归因于这些祖细胞的大量增殖,而有缺陷的中间神经元发育和迁移与此相关。我们的研究将为识别新型 AMPK 亚基特异性小分子调节剂开辟令人兴奋的新研究途径。这可能会导致神经退行性疾病和代谢疾病的新疗法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Biplab Dasgupta其他文献

Biplab Dasgupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Biplab Dasgupta', 18)}}的其他基金

ATIC is a novel molecular target in diffuse intrinsic pontine glioma
ATIC是弥漫性内源性脑桥胶质瘤的新型分子靶点
  • 批准号:
    10712984
  • 财政年份:
    2023
  • 资助金额:
    $ 34.58万
  • 项目类别:
Bystander gene deletions in cancer: mechanisms of therapeutic opportunities and challenges
癌症中的旁观者基因缺失:治疗机会和挑战的机制
  • 批准号:
    10301007
  • 财政年份:
    2019
  • 资助金额:
    $ 34.58万
  • 项目类别:
Bystander gene deletions in cancer: mechanisms of therapeutic opportunities and challenges
癌症中的旁观者基因缺失:治疗机会和挑战的机制
  • 批准号:
    10062522
  • 财政年份:
    2019
  • 资助金额:
    $ 34.58万
  • 项目类别:
Bystander gene deletions in cancer: mechanisms of therapeutic opportunities and challenges
癌症中的旁观者基因缺失:治疗机会和挑战的机制
  • 批准号:
    10518398
  • 财政年份:
    2019
  • 资助金额:
    $ 34.58万
  • 项目类别:
Mechanisms of Biguanide Sensitivity in GBM
GBM 中双胍敏感性的机制
  • 批准号:
    10590644
  • 财政年份:
    2016
  • 资助金额:
    $ 34.58万
  • 项目类别:
Biguanide Sensitivity of Glioma Stem Cells
胶质瘤干细胞的双胍敏感性
  • 批准号:
    10057268
  • 财政年份:
    2016
  • 资助金额:
    $ 34.58万
  • 项目类别:
Mechanisms of Biguanide Sensitivity in GBM
GBM 中双胍敏感性的机制
  • 批准号:
    10439389
  • 财政年份:
    2016
  • 资助金额:
    $ 34.58万
  • 项目类别:
Regulation of Forebrain Neurogenesis by the Energy Sensor AMP Kinase
能量传感器 AMP 激酶对前脑神经发生的调节
  • 批准号:
    9130292
  • 财政年份:
    2012
  • 资助金额:
    $ 34.58万
  • 项目类别:
Regulation of Forebrain Neurogenesis by the Energy Sensor AMP Kinase
能量传感器 AMP 激酶对前脑神经发生的调节
  • 批准号:
    8868186
  • 财政年份:
    2012
  • 资助金额:
    $ 34.58万
  • 项目类别:
Regulation of Forebrain Neurogenesis by the Energy Sensor AMP Kinase
能量传感器 AMP 激酶对前脑神经发生的调节
  • 批准号:
    8468224
  • 财政年份:
    2012
  • 资助金额:
    $ 34.58万
  • 项目类别:

相似国自然基金

AMPK通过调控Smurf1的SUMO化抑制创伤性异位骨化的研究
  • 批准号:
    31900852
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
血管微环境中内皮细胞AMPK抑制心肌纤维化的功能与机制研究
  • 批准号:
    81800273
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于AMPK-FXR-BSEP介导的齐墩果酸所致胆汁淤积性肝损伤作用机制研究
  • 批准号:
    81760678
  • 批准年份:
    2017
  • 资助金额:
    35.0 万元
  • 项目类别:
    地区科学基金项目
基于AMPK信号通路研究菝葜黄酮调控脂类代谢分子机制
  • 批准号:
    81760157
  • 批准年份:
    2017
  • 资助金额:
    32.0 万元
  • 项目类别:
    地区科学基金项目
AMPK通过Wnt/β-catenin信号通路调控绵羊肌内脂肪前体细胞分化的研究
  • 批准号:
    31402053
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of caspase-6 inhibitors for treatment of NASH
开发治疗 NASH 的 caspase-6 抑制剂
  • 批准号:
    10608905
  • 财政年份:
    2023
  • 资助金额:
    $ 34.58万
  • 项目类别:
Multimodal control of mitochondrial energetics to shape biological aging
线粒体能量的多模式控制塑造生物衰老
  • 批准号:
    10864185
  • 财政年份:
    2023
  • 资助金额:
    $ 34.58万
  • 项目类别:
Targeting ferroptosis in cancer therapy
癌症治疗中的靶向铁死亡
  • 批准号:
    10581748
  • 财政年份:
    2023
  • 资助金额:
    $ 34.58万
  • 项目类别:
ULK-mediated autophagy of α-globin in ß-thalassemia
α-地中海贫血中 ULK 介导的 α-珠蛋白自噬
  • 批准号:
    10649565
  • 财政年份:
    2022
  • 资助金额:
    $ 34.58万
  • 项目类别:
Activated Protein C in Acute Injury
急性损伤中的活化蛋白 C
  • 批准号:
    10475352
  • 财政年份:
    2022
  • 资助金额:
    $ 34.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了