Piezoelectric Pipetting for High Density Nucleic Acid Programmable Protein Arrays

用于高密度核酸可编程蛋白质阵列的压电移液

基本信息

  • 批准号:
    8550124
  • 负责人:
  • 金额:
    $ 59.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Among the currently available techniques for high throughput proteomics, protein microarrays have the greatest prospects to revolutionize molecular diagnostics for early detection, diagnosis, treatment, prognosis and monitoring clinical response. However, protein microarrays have yet to reach their full potential as a research or clinical molecular diagnostics tool due to difficulties associated with their manufacture. Currently protein microarrays are manufactured by expressing & purifying thousands of proteins, which are then stored until they are printed using pin-spotters, a process flow with many inherent logistical problems. Furthermore, many proteins are unstable so these steps must all be maintained at cold temperature. Problems associated with pin spotters include: relatively slow printing speeds, poor spot morphology, pin biofouling issues, variable spot sizes, limited microarray densities and others. Thus, there are compelling needs for better and less expensive manufacturing methods for protein microarrays. In this grant we will combine two successful technologies to develop an innovative method for mass production of faster, better and cheaper protein microarrays. One technology is based on our advanced high speed piezoelectric pipettes to print arrays of cDNA templates and the other is to express proteins in situ directly on the microarray surface. Engineering Arts specializes in providing microarray production solutions based on its proprietary piezoelectric pipetting technology. Dr. LaBaer is the co-inventor of nucleic acid programmable protein arrays (NAPPA): the very first method to express proteins in situ directly in a microarray format. Engineering Arts will install one of its production-scale piezoelectric microarray machines (POC2) in Dr. LaBaer's Center for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University. We will develop tools, protocols and process controls required to manufacture production-scale, commercial-grade, high-density, customizable protein microarrays making them readily accessible to the broad proteomics research and clinical diagnostics communities. This grant directly addresses the call to develop a broadly applicable research tool that addresses a core technical challenge in proteomics. By making high quality protein microarrays more readily assessable, this grant will help unlock their true potential for research and clinical applications. This grant brings together world-class piezoelectric pipettes and electronics developed at Engineering Arts, over ten years experience in developing commercial automated production-scale piezoelectric microarraying manufacturing capabilities for high-density whole-genome gene expression microarrays; world class production-scale automation process manufacturing equipment from an established Singapore based semiconductor production equipment manufacturer, Dr. LaBaer's unique and patented NAPPA technology together in his CPD to develop, characterize and validate the next generation of commercial protein microarrays. PUBLIC HEALTH RELEVANCE: Nearly all diagnostics and therapeutics act through proteins, which are the working machines of biology. The study of proteins, both their activities and their dysfunction in disease, has been historically managed one- protein-at-a-time; however, this will be dramatically accelerated through the use of protein microarrays, which microscopically display thousands of functional proteins. This grant will develop technology to mass produce better and less expensive protein microarrays, making them more readily accessible to the broad research and health care communities.
描述(由申请人提供):在当前可用的高通量蛋白质组学技术中,蛋白质微阵列具有彻底改变分子诊断的最大前景,用于早期检测,诊断,治疗,预后和监测临床反应。但是,由于与生产相关的困难,蛋白质微阵列尚未作为研究或临床分子诊断工具的全部潜力。目前,蛋白质微阵列是通过表达和净化数千种蛋白质制造的,然后将其存储到使用针状斑点打印,直到使用引脚打印,这是许多固有的后勤问题的过程流。此外,许多蛋白质都是不稳定的,因此这些步骤必须全部保持在冷温下。与PIN发现者相关的问题包括:相对较慢的打印速度,斑点形态差,PIN生物污染问题,可变点尺寸,有限的微阵列密度等。因此,对于蛋白质微阵列来说,有令人信服的需求对更好,更便宜的制造方法。在这笔赠款中,我们将结合两种成功的技术,以开发一种创新的方法,用于更快,更便宜,更便宜的蛋白质微阵列的大规模生产。一种技术是基于我们先进的高速压电移液管来打印cDNA模板的阵列,另一种是直接在微阵列表面上直接表达蛋白质。工程艺术专门根据其专有的压电移液技术提供微阵列生产解决方案。 Labaer博士是核酸可编程蛋白阵列(NAPPA)的共同发明者:直接以微阵列格式表达原位蛋白质的第一种方法。工程艺术将在亚利桑那州立大学Biodesign Institute,Biodesign Institute,Labaer博士的个性化诊断中心(CPD)中安装其生产规模的压电微阵列机器(POC2)。我们将开发制造生产规模,商业级,高密度,可定制的蛋白质微阵列所需的工具,协议和过程控制,从而使它们容易获得广泛的蛋白质组学研究和临床诊断社区。该赠款直接解决了开发一种广泛适用的研究工具的呼吁,该工具应对蛋白质组学中的核心技术挑战。通过使高质量的蛋白质微阵列更容易评估,该赠款将有助于释放其真正的研究和临床应用潜力。这项赠款汇集了工程艺术开发的世界一流的压电管和电子设备,在开发商业自动化生产规模的压电微阵列制造能力方面有十多年的经验,用于高密度全基因组表达微阵列;世界一流的生产规模自动化工艺工艺制造设备来自既定的新加坡半导体生产设备制造商,Labaer博士在他的CPD中共同开发,表征和验证下一代商业蛋白质微阵列的独特而专利的NAPPA技术。 公共卫生相关性:几乎所有通过蛋白质的诊断和治疗方法,即生物学的工作机器。蛋白质的研究,其活性和疾病功能障碍,历史上一直是一次性的蛋白质。但是,通过使用蛋白微阵列,这将大大加速,这些蛋白微阵列在显微镜下显示了数千种功能蛋白。这项赠款将开发技术以生产更好,更便宜的蛋白质微阵列,从而使它们更容易被广泛的研究和卫生保健社区访问。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PETER J. WIKTOR其他文献

PETER J. WIKTOR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PETER J. WIKTOR', 18)}}的其他基金

Piezoelectric Pipetting for High Density Nucleic Acid Programmable Protein Arrays
用于高密度核酸可编程蛋白质阵列的压电移液
  • 批准号:
    8139751
  • 财政年份:
    2010
  • 资助金额:
    $ 59.96万
  • 项目类别:
Piezoelectric Pipetting for High Density Nucleic Acid Programmable Protein Arrays
用于高密度核酸可编程蛋白质阵列的压电移液
  • 批准号:
    8001744
  • 财政年份:
    2010
  • 资助金额:
    $ 59.96万
  • 项目类别:
Piezoelectric Pipetting for High Density Nucleic Acid Programmable Protein Arrays
用于高密度核酸可编程蛋白质阵列的压电移液
  • 批准号:
    8716785
  • 财政年份:
    2010
  • 资助金额:
    $ 59.96万
  • 项目类别:
Piezoelectric Pipetting for High Density Nucleic Acid Programmable Protein Arrays
用于高密度核酸可编程蛋白质阵列的压电移液
  • 批准号:
    8534915
  • 财政年份:
    2010
  • 资助金额:
    $ 59.96万
  • 项目类别:
Piezoelectric Pipetting Technology for DNA Analysis
用于 DNA 分析的压电移液技术
  • 批准号:
    6734689
  • 财政年份:
    1999
  • 资助金额:
    $ 59.96万
  • 项目类别:
Piezoelectric Pipetting Technology for DNA Analysis
用于 DNA 分析的压电移液技术
  • 批准号:
    6618819
  • 财政年份:
    1999
  • 资助金额:
    $ 59.96万
  • 项目类别:
PIEZO ELECTRIC PIPETTING TECHNOLOGY FOR DNA ANALYSIS
用于 DNA 分析的压电移液技术
  • 批准号:
    6015579
  • 财政年份:
    1999
  • 资助金额:
    $ 59.96万
  • 项目类别:
Piezoelectric Pipetting Technology for DNA Analysis
用于 DNA 分析的压电移液技术
  • 批准号:
    6871313
  • 财政年份:
    1999
  • 资助金额:
    $ 59.96万
  • 项目类别:

相似国自然基金

基于空间代谢流技术探究人参-远志药对通过纠偏单胺类神经递质代谢紊乱治疗阿尔茨海默病的整合作用模式
  • 批准号:
    82304894
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
胺类有机物修饰的铂单晶电极|电解质界面结构及氧还原反应研究
  • 批准号:
    22372154
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
长链阴离子捕收剂对胺类捕收剂反浮选赤铁矿的优化及其泡沫调控机制
  • 批准号:
    52364029
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
烟曲链霉菌不对称合成手性胺类人工产物4β-AIP的手性控制机制
  • 批准号:
    22378230
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
电力行业碳捕集装置醇胺类物质挥发性及其逃逸特征研究
  • 批准号:
    22376113
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Glycan biomarker panels in liquid biopsies for predicting treatment response in lupus nephritis
液体活检中的聚糖生物标志物组用于预测狼疮性肾炎的治疗反应
  • 批准号:
    10601270
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
Illumination of TAAR2 Location, Function and Regulators
TAAR2 位置、功能和调节器的阐明
  • 批准号:
    10666759
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
Bi-functional photo-crosslinking (BFPX) for genome-wide study of protein-nucleic acid interactions
双功能光交联 (BFPX) 用于蛋白质-核酸相互作用的全基因组研究
  • 批准号:
    10593666
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
Shigella Conjugate Vaccine (SCV4) Development, Characterization, and Pre-clinical Evaluation
志贺氏菌结合疫苗 (SCV4) 的开发、表征和临床前评估
  • 批准号:
    10704325
  • 财政年份:
    2023
  • 资助金额:
    $ 59.96万
  • 项目类别:
Genetically encoded bicyclic peptide libraries for the discoveryof novel antiviral agents
用于发现新型抗病毒药物的基因编码双环肽库
  • 批准号:
    10730692
  • 财政年份:
    2021
  • 资助金额:
    $ 59.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了