Structural and Computational Studies of LOV domain proteins and Cryptochromes
LOV 结构域蛋白和隐花色素的结构和计算研究
基本信息
- 批准号:8517469
- 负责人:
- 金额:$ 5.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-01 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:ARNT geneActive SitesAffectAgingAmino AcidsBacteriaBehaviorBehavioralBindingBiochemicalBiological ModelsCarbonCellular biologyChemicalsChemistryCircadian RhythmsComplement component C4aComplexComputer SimulationComputing MethodologiesCrystallographyCuesCysteineDNA Sequence RearrangementDesire for foodDimerizationDrosophila genusDrosophila melanogasterElectronicsElectronsExhibitsFeedbackFlavin MononucleotideFlavin-Adenine DinucleotideFlavinsGenesGeneticGenetic TranscriptionGoalsHealthHormonesHumanInduced MutationInsectaInvestigationKineticsKnowledgeLaboratoriesLeadLengthLifeLightMammalsMental disordersMetabolic PathwayMetabolismMethodsModelingMolecularMolecular ConformationN-terminalNeurosporaNeurospora crassaOrganismOxidation-ReductionOxygenPatternPeriodicityPhotochemistryPhotoreceptorsPhysiologicalPhysiological ProcessesPlantsPoint MutationProductionPropertyProtein FamilyProteinsRegulationResearch ProposalsRhodobacterRhodobacter sphaeroidesSignal TransductionSiteSleepSleep DisordersStructureTemperatureTertiary Protein StructureTimeTime PerceptionUncertaintyVariantWorkadductchemical reactioncircadian pacemakercofactorcomputer studiescomputerized data processingcryptochromedensitydesigndisorder preventionelectron densityelectronic structureflyfungusinsightlight entrainmentprotein functionquantumresponsesensortheoriesvoltage
项目摘要
DESCRIPTION (provided by applicant): Circadian clocks underlie the rhythmic physiological functions and behaviors of eukaryotic organisms in all kingdoms of life. The clock is a widespread cellular mechanism that adjusts to environmental cues like light and temperature and impacts many aspects of our health such as sleep patterns, time-perception, and aging, as well as the treatment and prevention of disease. A complex signaling network that integrates transcriptional feedback loops maintains the rhythm, and although genetics and cell biology studies have identified the functions of clock genes within the loops, the molecular mechanisms of signal processing and propagation are unknown. Two clock components that are important for light entrainment - light, oxygen, and voltage (LOV) domains and Cryptochromes (CRY) - will be structurally and computationally characterized in the model systems of Neurospora (fungi), Rhodobacter (bacteria), and Drosophila (flies) in order to understand how light signals are processes and propagated. The LOV and CRY components are both flavin-containing photosensors that exhibit conformational changes upon light-excitation, but vary in terms of their photochemistry and structure. To determine whether LOV domains exhibit analogous photochemistry and similar light-induced structural changes in different species despite significant differences in terminal residues, Rhodobacter LOV (RLOV) and a LOV protein in Neurospora, Vivid (VVD), will be investigated in both light- and dark-states by biochemical, structural and computational methods. The goal is to determine how protein conformational changes correlate to cofactor photochemistry, and how the changes induce signal propagation to LOV partners and downstream clock components. Similarities of RLOV to VVD would indicate a mechanism shared between protein families, and would be meaningful as a broad mechanism of LOV domain chemistry. Drosophila Cryptochrome (dCRY) is known to transduce light signals associated with circadian clocks. Uncertainties in dCRY photochemistry and signal transduction will also be examined by biochemical, structural, and computational methods. Significant conformational changes of dCRY have been associated with light- activation; thus, structural characterization of dCRY in light-induced and point mutation-designed alternative conformations will be completed using x-ray crystallography to elucidate the changes. Additionally, Timeless (TIM), a protein partner of CRY that impacts transcription of clock controlled genes, will be structurally characterized in combination with dCRY to provide knowledge of how the light signal is converted to activate downstream effects. Ultimately, structural characterization of clock components using x-ray crystallography, kinetic analyses from time-resolved spectroscopic methods, and quantum chemical calculations of the flavin- containing active centers, will provide insight into how flavin photochemistry generates protein conformational changes, and how structural these changes lead to signal propagation.
描述(由申请人提供):生物钟是所有生命领域真核生物节律性生理功能和行为的基础。生物钟是一种广泛存在的细胞机制,它可以适应光和温度等环境因素,并影响我们健康的许多方面,例如睡眠模式、时间感知和衰老,以及疾病的治疗和预防。整合转录反馈环的复杂信号网络维持着节律,尽管遗传学和细胞生物学研究已经确定了环内时钟基因的功能,但信号处理和传播的分子机制尚不清楚。对光夹带很重要的两个时钟成分——光、氧和电压(LOV)域和隐花色素(CRY)——将在脉孢菌(真菌)、红细菌(细菌)和果蝇的模型系统中进行结构和计算表征。苍蝇),以了解光信号是如何处理和传播的。 LOV 和 CRY 组件都是含黄素的光传感器,在光激发下表现出构象变化,但其光化学和结构有所不同。为了确定 LOV 结构域是否在不同物种中表现出类似的光化学和类似的光诱导结构变化,尽管末端残基存在显着差异,将在光和光下研究红细菌 LOV (RLOV) 和脉孢菌中的 LOV 蛋白,Vivid (VVD)。通过生物化学、结构和计算方法研究暗态。目标是确定蛋白质构象变化如何与辅因子光化学相关,以及这些变化如何诱导信号传播到 LOV 伙伴和下游时钟组件。 RLOV 与 VVD 的相似性表明蛋白质家族之间共享的机制,并且作为 LOV 结构域化学的广泛机制是有意义的。果蝇隐花色素 (dCRY) 已知可以传导与生物钟相关的光信号。 dCRY 光化学和信号转导的不确定性也将通过生物化学、结构和计算方法进行检查。 dCRY 的显着构象变化与光激活有关;因此,将使用 X 射线晶体学来完成光诱导和点突变设计的替代构象中 dCRY 的结构表征,以阐明这些变化。此外,Timeless (TIM) 是 CRY 的一种蛋白质伴侣,可影响时钟控制基因的转录,它将与 dCRY 结合进行结构表征,以提供有关光信号如何转换以激活下游效应的知识。最终,使用 X 射线晶体学对时钟组件进行结构表征、时间分辨光谱方法的动力学分析以及含黄素活性中心的量子化学计算,将深入了解黄素光化学如何产生蛋白质构象变化,以及这些变化的结构如何变化导致信号传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen S Conrad其他文献
Karen S Conrad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen S Conrad', 18)}}的其他基金
Structural and Computational Studies of LOV domain proteins and Cryptochromes
LOV 结构域蛋白和隐花色素的结构和计算研究
- 批准号:
8313117 - 财政年份:2012
- 资助金额:
$ 5.22万 - 项目类别:
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 5.22万 - 项目类别:
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 5.22万 - 项目类别:
Molecular Mechanisms that Control mRNA Decapping in Biological Condensates
控制生物浓缩物中 mRNA 脱帽的分子机制
- 批准号:
10577994 - 财政年份:2023
- 资助金额:
$ 5.22万 - 项目类别:
Role and Theranostics Potential of Enolase in Prostate Cancer Health Disparities
烯醇化酶在前列腺癌健康差异中的作用和治疗潜力
- 批准号:
10649164 - 财政年份:2023
- 资助金额:
$ 5.22万 - 项目类别:
Discovery of phosgene and chlorine gas modes of action and therapeutic targets using chemoproteomic profiling strategies
使用化学蛋白质组学分析策略发现光气和氯气的作用模式和治疗靶点
- 批准号:
10883970 - 财政年份:2023
- 资助金额:
$ 5.22万 - 项目类别: