Pre- and Post-doctoral Training in Environmental Biostatistics
环境生物统计学博士前和博士后培训
基本信息
- 批准号:8500274
- 负责人:
- 金额:$ 11.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-12 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant)
The Department of Biostatistics at the Johns Hopkins Bloomberg School of Public Health proposes Environmental Biostatistics pre- and postdoctoral training programs to support four (4) pre-doctoral and one (1) postdoctoral student each year. The pre-doctoral program entails two or more years of coursework followed by examinations and a research thesis. Training grant support will be provided for the initial 3 years; research assistantships will fund the remaining training period. The postdoctoral program will provide support for two (2) years and will include collaboration with a research mentor or with mentors, formal and informal interactions with other postdoctoral students in the department (10 for 2009-2010) and the school. Both programs will be located in the Department of Biostatistics; faculty in the School's Departments of Biostatistics, Environmental Health Sciences, Epidemiology, Health Services Research, International Health, Mental Health, and Molecular Microbiology and Immunology; and faculty in the Medical School, the Whiting School of Engineering and the School of Arts and Sciences will participate as classroom educators and research mentors/collaborators. Through coursework, seminars, participation in working groups and directed doctoral research, the investigators shall educate the next generation of leaders in development application of biostatistical science to environmental research and policy. They shall integrate biostatistics and biostatisticians with other environmental and basic sciences in an educational climate ideally suited to fostering lasting relationships among graduate students, postdoctoral students and faculty in biostatistics and other fields. Consequently, trainees will effectively collaborate across disciplines, identify the key methodological needs, develop and apply statistical designs and analyses that address these needs. Trainees will effectively communicate substantive findings to scientists, policy makers and the general public. Program and affiliated faculty are committed to honoring this philosophy and to achieving these goals.
Relevance: Participation of top tier biostatisticians with a deep understanding of statistical concepts and techniques empowered by effective understanding of the relevant science is essential to the design, conduct, analysis, and reporting of public health relevant research. The pre- and postdoctoral programs educate and acculturate trainees to be leaders in these roles.
描述(由申请人提供)
约翰·霍普金斯彭博公共卫生学院生物统计学系提议环境生物统计学前和博士后培训计划,以支持每年四(4)个博士后和一(1)个博士后学生。 博士前计划需要两年或更长时间的课程工作,然后进行考试和研究论文。最初的3年将提供培训赠款支持;研究助理职位将资助剩余的培训期。博士后计划将为两(2)年提供支持,并将包括与研究导师或导师的合作,与该系的其他博士后学生(2009-2010)和学校的正式和非正式互动。 这两个程序都将位于生物统计学系;学校生物统计学,环境健康科学,流行病学,卫生服务研究,国际卫生,心理健康以及分子微生物学和免疫学的教师;医学院,惠廷工程学院和艺术与科学学院的教师将作为课堂教育者和研究导师/合作者参加。通过课程,研讨会,参与工作组和指导博士研究,研究人员应教育下一代领导者在开发生物统计学科学对环境研究和政策的发展。 他们应将生物统计学和生物统计学家与其他环境和基础科学融合在一起,以理想的气候,非常适合在生物统计学和其他领域中培养研究生,博士后生和教职员工之间的持久关系。因此,学员将有效地跨学科合作,确定关键的方法论需求,发展和应用统计设计和分析,以满足这些需求。学员将有效地向科学家,政策制定者和公众传达实质性发现。计划和附属教师致力于尊重这一哲学并实现这些目标。
相关性:顶级生物统计学家参与对统计概念和技术的深入了解,对相关科学有效理解所赋予的统计概念和技术对于对公共卫生相关研究的设计,进行,分析和报告至关重要。学前和博士后计划教育和文化学员担任这些角色的领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROGER PENG其他文献
ROGER PENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROGER PENG', 18)}}的其他基金
NIH R25 - A Training Module for Reproducible Data Science Research
NIH R25 - 可重复数据科学研究的培训模块
- 批准号:
10807490 - 财政年份:2021
- 资助金额:
$ 11.14万 - 项目类别:
A Training Module for Reproducible Data Science Research
可重复数据科学研究的培训模块
- 批准号:
10409825 - 财政年份:2021
- 资助金额:
$ 11.14万 - 项目类别:
A Training Module for Reproducible Data Science Research
可重复数据科学研究的培训模块
- 批准号:
10199242 - 财政年份:2021
- 资助金额:
$ 11.14万 - 项目类别:
NIH R25 - A Training Module for Reproducible Data Science Research
NIH R25 - 可重复数据科学研究的培训模块
- 批准号:
10663171 - 财政年份:2021
- 资助金额:
$ 11.14万 - 项目类别:
Extreme Heat and Human Health: Characterizing Vulnerability in a Changing Climate
极端高温与人类健康:描述气候变化中的脆弱性
- 批准号:
8308530 - 财政年份:2011
- 资助金额:
$ 11.14万 - 项目类别:
Statistical Methods for Complex Enivronmental Health Data
复杂环境健康数据的统计方法
- 批准号:
8402810 - 财政年份:2011
- 资助金额:
$ 11.14万 - 项目类别:
Statistical Methods for Complex Enivronmental Health Data
复杂环境健康数据的统计方法
- 批准号:
8231319 - 财政年份:2011
- 资助金额:
$ 11.14万 - 项目类别:
Extreme Heat and Human Health: Characterizing Vulnerability in a Changing Climate
极端高温与人类健康:描述气候变化中的脆弱性
- 批准号:
8148057 - 财政年份:2011
- 资助金额:
$ 11.14万 - 项目类别:
Statistical Methods for Complex Enivronmental Health Data
复杂环境健康数据的统计方法
- 批准号:
8600272 - 财政年份:2011
- 资助金额:
$ 11.14万 - 项目类别:
Statistical Methods for Complex Enivronmental Health Data
复杂环境健康数据的统计方法
- 批准号:
8019720 - 财政年份:2011
- 资助金额:
$ 11.14万 - 项目类别:
相似海外基金
Sex differences in traumatic brain injury: Neural circuit mediators of overlapping stress and physical effects
创伤性脑损伤的性别差异:重叠压力和物理效应的神经回路调节因素
- 批准号:
10751089 - 财政年份:2023
- 资助金额:
$ 11.14万 - 项目类别:
Addressing structural racism to reduce racial disparities in youth firearm injuries
解决结构性种族主义,减少青少年枪伤的种族差异
- 批准号:
10670388 - 财政年份:2022
- 资助金额:
$ 11.14万 - 项目类别:
Addressing structural racism to reduce racial disparities in youth firearm injuries
解决结构性种族主义,减少青少年枪伤的种族差异
- 批准号:
10525658 - 财政年份:2022
- 资助金额:
$ 11.14万 - 项目类别: