Enhancing radiation and cisplatin HNSCC cell killing by inhibiting mitochondrial

通过抑制线粒体增强放射和顺铂对 HNSCC 细胞的杀伤作用

基本信息

  • 批准号:
    8305841
  • 负责人:
  • 金额:
    $ 18.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-04-01 至 2014-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Head and neck squamous cell carcinoma (HNSCC) is the ninth most common cancer worldwide. In the US there are 40-50,000 new cases a year and ~12,000 deaths due to HNSCC. Early stage disease is treated with surgery or radiotherapy alone, while advanced stage HNSCC is treated with a combination of cisplatin and radiotherapy. The overall survival rate is only ~40%, and ~30% of advanced stage disease has locoregional recurrence. Tumor cells living in low oxygen microenvironments are more resistant to radiotherapy. Combining cisplatin with radiation has improved cell killing, but cisplatin is very toxic and tumors can become resistant to cisplatin during treatment. Therefore there is a need to develop new complementary therapies to improve cell killing by radiation and cisplatin. This proposal aims to determine whether disruption of mitochondrial double strand break (DSB) repair can be used as a complementary treatment to improve the therapeutic outcome of radiotherapy, or cisplatin and radiotherapy, and to develop a potential new molecular tool that can be used to enhance HNSCC cell killing. Radiotherapy and cisplatin work by damaging the cell's DNA: radiotherapy introduces DSBs, and cisplatin introduces DNA crosslinks that can be converted to DSBs during repair or by stalling replication forks. Damage to the mitochondrial genome can result in loss of functional mitochondria, an induction of oxidative stress and greater nuclear DNA damage. Both nuclear and mitochondrial DNA repair mechanisms exist, although less is known about mitochondrial repair. This work aims to understand more about cell death from mitochondrial damage. We have developed a mitochondrial-targeted bacterial Ku protein (cKumyc) that can bind DSBs but is "missing" the domains required to link with other human DNA repair proteins. We hypothesize that the cKumyc when targeted to the mitochondria in HNSCC cells will bind to DSBs following treatment with ionizing radiation or cisplatin, disrupting repair, causing mitochondrial genome fragmentation, reactive oxygen species (ROS) production and cell death. In stable HNSCC cell lines will be generated that can be induced with doxycycline to express cKumyc. Assays will be performed to determine clonogenic cell survival, mitochondrial function, ROS production, mitochondrial DNA fragmentation and mode of cell death after treatment with radiation and/ or cisplatin. Disruption of mitochondrial DSB repair is expected to enhance cell death. Since hypoxia plays a Specific Aim 1 significant role in resistance to radiotherapy, in we will develop a cKumyc that is expressed only in hypoxic cells and its function will be tested using the assays in aim 1 at 1-5% oxygen. This will aid future targeting of radioresistant hypoxic tumor cells. We hypothesize that cKumyc will radiosensitize the HNSCC cells under hypoxia. These proof-of-principle experiments have the potential of uncovering a new target (mitochondrial DNA) as well as a new tool for the design of a novel complementary treatment for radiotherapy/ combined chemo-radiotherapy to enhance cancer cell killing. Specific Aim 2 PUBLIC HEALTH RELEVANCE: Head and neck squamous cell carcinomas are treated with radiotherapy and/ or cisplatin. Radiotherapy kills cancer cells by producing DNA damage; the most lethal of which is the DNA double strand break. Cisplatin is a chemotherapy that introduces DNA crosslinks, which block replication forks generating double strand breaks. Double strand breaks are also repair intermediates of DNA crosslinks. This proposal aims to study the role of mitochondrial DNA double strand breaks and their repair in the survival of head and neck squamous cell carcinoma cells under normoxic and hypoxic conditions after treatment with radiation or cisplatin. A new molecular tool to disrupt mitochondrial double strand break repair has been generated and will be tested to determine whether the disruption of mitochondrial repair could be developed as a complementary therapy to radiotherapy/chemotherapy to enhance the killing of cancer cells and improve the long term survival of cancer patients.
描述(由申请人提供):头部和颈部鳞状细胞癌(HNSCC)是全球第九个最常见的癌症。在美国,每年有40-50,000例新病例,HNSCC造成的死亡约为12,000例。早期疾病仅通过手术或放疗治疗,而晚期HNSCC则通过顺铂和放射疗法的组合进行治疗。总体存活率仅约40%,大约30%的晚期疾病患有局部复发。生活在低氧气微环境中的肿瘤细胞对放射疗法更具耐药性。将顺铂与辐射结合起来可以改善细胞的杀伤,但顺铂具有非常毒性,在治疗过程中肿瘤对顺铂具有抗性。因此,有必要开发新的补充疗法来改善辐射和顺铂的杀伤。该提案旨在确定线粒体双链断裂(DSB)修复的破坏可以用作补充治疗方法,以改善放射疗法的治疗结果,或顺铂和放射疗法,并开发可用于增强HNSCC细胞杀死的潜在新分子工具。放射疗法和顺铂通过损害细胞的DNA来起作用:放射疗法引入DSB,顺铂引入DNA交叉链接,可以在修复过程中或通过停止复制叉在修复过程中转换为DSB。线粒体基因组的损害会导致功能性线粒体的损​​失,氧化应激的诱导和更大的核DNA损伤。核和线粒体DNA修复机制都存在,尽管对线粒体修复知之甚少。这项工作旨在更多地了解线粒体损伤的细胞死亡。我们已经开发了一种靶向线粒体的细菌KU蛋白(CKUMYC),该细菌蛋白可以结合DSB,但“缺少”与其他人DNA修复蛋白链接所需的结构域。我们假设ckumyc靶向HNSCC细胞中的线粒体时,用电离辐射或顺铂治疗后将与DSB结合,从而破坏修复,导致线粒体基因组碎片化,活性氧,活性氧(ROS)生产(ROS)生产和细胞死亡。在稳定的HNSCC细胞系中,将生成可以用强力霉素诱导以表达ckumyc的。将进行测定以确定克隆原性的存活,线粒体功能,ROS产生,线粒体DNA碎片和用辐射和/或顺铂治疗后细胞死亡的模式。线粒体DSB修复的破坏有望增强细胞死亡。由于缺氧在对放射疗法的耐药性中起特定的目标1的重要作用,因此我们将开发仅在低氧细胞中表达的ckumyc,其功能将在1-5%氧气中的AIM 1中测试。这将有助于将来靶向放射耐药性低氧肿瘤细胞。我们假设Ckumyc将在缺氧下放射敏感性HNSCC细胞。这些原则实验具有揭示新靶标(线粒体DNA)的潜力,以及一种新的工具,用于设计新型的放射治疗/联合化学疗法治疗,以增强癌细胞杀伤。具体目标2 公共卫生相关性:用放射治疗和/或顺铂治疗头部和颈部鳞状细胞癌。放射疗法通过产生DNA损伤杀死癌细胞。其中最致命的是DNA双链断裂。顺铂是一种化学疗法,它引入了DNA交联,该化疗阻断了复制叉会产生双链断裂。双链断裂也是DNA交联的修复中间体。该提案旨在研究线粒体DNA双链断裂的作用,并在辐射或顺铂治疗后在常氧和低氧条件下的头颈部鳞状细胞癌细胞的存活中修复。已经产生了一种破坏线粒体双链断裂修复的新分子工具,并将进行测试,以确定是否可以开发线粒体修复的破坏,作为对放射疗法/化学疗法的补充治疗,以增强癌细胞的杀伤并改善癌症患者的长期存活。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LYNN HARRISON其他文献

LYNN HARRISON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LYNN HARRISON', 18)}}的其他基金

Hydrogen Sulfide as a Radiosensitizer for Glioblastoma
硫化氢作为胶质母细胞瘤的放射增敏剂
  • 批准号:
    9813138
  • 财政年份:
    2019
  • 资助金额:
    $ 18.49万
  • 项目类别:
Enhancing radiation and cisplatin HNSCC cell killing by inhibiting mitochondrial
通过抑制线粒体增强放射和顺铂对 HNSCC 细胞的杀伤作用
  • 批准号:
    8451263
  • 财政年份:
    2012
  • 资助金额:
    $ 18.49万
  • 项目类别:
DNA Repair of Multiply Damaged Sites in Cells
细胞内多重损伤位点的 DNA 修复
  • 批准号:
    7909221
  • 财政年份:
    2009
  • 资助金额:
    $ 18.49万
  • 项目类别:
DNA REPAIR OF MULTIPLY DAMAGED SITES IN CELLS
细胞内多重损伤位点的 DNA 修复
  • 批准号:
    6377800
  • 财政年份:
    2000
  • 资助金额:
    $ 18.49万
  • 项目类别:
DNA REPAIR OF MULTIPLY DAMAGED SITES IN CELLS
细胞内多重损伤位点的 DNA 修复
  • 批准号:
    6633670
  • 财政年份:
    2000
  • 资助金额:
    $ 18.49万
  • 项目类别:
DNA REPAIR OF MULTIPLY DAMAGED SITES IN CELLS
细胞内多重损伤位点的 DNA 修复
  • 批准号:
    6755930
  • 财政年份:
    2000
  • 资助金额:
    $ 18.49万
  • 项目类别:
DNA REPAIR OF MULTIPLY DAMAGED SITES IN CELLS
细胞内多重损伤位点的 DNA 修复
  • 批准号:
    6514437
  • 财政年份:
    2000
  • 资助金额:
    $ 18.49万
  • 项目类别:
DNA REPAIR OF MULTIPLY DAMAGED SITES IN CELLS
细胞内多重损伤位点的 DNA 修复
  • 批准号:
    6088445
  • 财政年份:
    2000
  • 资助金额:
    $ 18.49万
  • 项目类别:
DNA Repair of Multiply Damaged Sites in Cells
细胞内多重损伤位点的 DNA 修复
  • 批准号:
    7424966
  • 财政年份:
    2000
  • 资助金额:
    $ 18.49万
  • 项目类别:
DNA Repair of Multiply Damaged Sites in Cells
细胞内多重损伤位点的 DNA 修复
  • 批准号:
    7624393
  • 财政年份:
    2000
  • 资助金额:
    $ 18.49万
  • 项目类别:

相似国自然基金

丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
  • 批准号:
    82360332
  • 批准年份:
    2023
  • 资助金额:
    31.00 万元
  • 项目类别:
    地区科学基金项目
利用可视可控hypocretin神经元凋亡的疾病模型进行发作性睡病发病机制研究
  • 批准号:
    81901346
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
组织器官衰老致退行性演变多示踪剂全身动态PET显像研究
  • 批准号:
    91949121
  • 批准年份:
    2019
  • 资助金额:
    68.0 万元
  • 项目类别:
    重大研究计划
Slug参与CP-31398介导的p53突变型子宫内膜癌细胞凋亡的机制研究
  • 批准号:
    81702967
  • 批准年份:
    2017
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
Fascin-2基因TALEN敲除小鼠渐进性听力减退的机制研究
  • 批准号:
    81771020
  • 批准年份:
    2017
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

Deciphering neural crest-specific TFAP2 pathways in midface development and dysplasia
解读中面部发育和发育不良中神经嵴特异性 TFAP2 通路
  • 批准号:
    10676016
  • 财政年份:
    2023
  • 资助金额:
    $ 18.49万
  • 项目类别:
Intensive cholesterol-lowering intervention and anti-tumor immunity modeled in prostate cancer
以前列腺癌为模型的强化降胆固醇干预和抗肿瘤免疫
  • 批准号:
    10802975
  • 财政年份:
    2023
  • 资助金额:
    $ 18.49万
  • 项目类别:
Optimization of High Frequency Irreversible Electroporation (H-FIRE) for tumor ablation and immune system activation in pancreatic cancer applications
高频不可逆电穿孔 (H-FIRE) 的优化,用于胰腺癌应用中的肿瘤消融和免疫系统激活
  • 批准号:
    10659581
  • 财政年份:
    2023
  • 资助金额:
    $ 18.49万
  • 项目类别:
Optimizing brain penetrance of caspase-6 inhibitors to treat neurodegenerative diseases
优化 caspase-6 抑制剂的脑外显率来治疗神经退行性疾病
  • 批准号:
    10603619
  • 财政年份:
    2023
  • 资助金额:
    $ 18.49万
  • 项目类别:
Effects of Tamoxifen in skeletal muscle recovery after spinal cord injury and mechanisms activated by the drug
他莫昔芬对脊髓损伤后骨骼肌恢复的影响及其激活机制
  • 批准号:
    10331118
  • 财政年份:
    2022
  • 资助金额:
    $ 18.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了