A Novel eFace System to Prevent the Risks of Facial Distortion after CMF Surgery

新型 eFace 系统可预防 CMF 手术后面部变形的风险

基本信息

  • 批准号:
    8439794
  • 负责人:
  • 金额:
    $ 38.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-05-01 至 2018-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The number of patients suffering from craniomaxillofacial (CMF) deformities and requiring surgical correction is escalating. CMF deformities may involve skeleton, overlying soft-tissues, or the both. Patients with CMF deformities often have psychological problems. The goal of CMF surgery is to reconstruct a normal facial appearance and function, and the outcome of the surgery is judged as such. The current problem is that we do not have a reliable way of simulating the soft-tissue-change following skeletal reconstruction. In treating patients with isolated skeletal defects, the current practice is to normalize the skeleton, hoping for optimal facial appearance. However, because the thickness and contour of the soft-tissue envelope varies from patient to patient, this approach is not reliable. The problem is even bigger in patients with composite defects. For example, in the scenario of a patient with a skeletal deformity and a mild soft-tissue defect, a surgeon would have to know, before surgery, how to overcorrect the skeleton to camouflage the soft-tissue defect. But, this information can only be attained by having an accurate planning system to simulate soft-tissue changes. In addition, from patient's perspective, the final facial appearance is the most apparent to them. Therefore, it is extremely important, for both doctors and patients, to accurately simulate soft-tissue-deformation. Simulation methods must be accurate and fast. Attaining both is difficult because these attributes are inversely related, the more accurate the model, the longer it takes to prepare and run. Among the most effective, they are empirical-based model, mass spring model, finite element model, and mass tensor model. Unfortunately they are either too inaccurate or too slow, and clinically unacceptable. Our hypothesis is that facial soft-tissue changes following virtual osteotomy can be accurately simulated by our innovative approach using an anatomically detailed modeling and mapping routine, along with statistical modeling technique. To test our hypothesis, we propose to develop an open source novel imaging informatics platform, eFace system, to accurately simulate soft-tissue-change following virtual osteotomies, and thus to significantly improve the outcomes of patients undergoing facial reconstruction. This approach can not only maintain the integrity of complex facial anatomy to accurately simulate the facial soft tissue deformation, but also significantly improve the computational efficiency in order to fit the requirement for clinical use This project presents an innovative approach to model the facial soft-tissue deformation. If successful, it will allow accurate simulation of soft-tissue changes after virtual osteotomy. Patients will also be able to foresee the postoperative face preoperatively (patient education) and regain their psychological confidence. Finally, eFace will have significant impact and applications in orthodontics, plastic surgery, general surgery, growth/aging prediction, and forensic science.
描述(由申请人提供):患有颅颌面(CMF)畸形并需要手术矫正的患者数量正在不断增加。 CMF 畸形可能涉及骨骼、上覆软组织或两者兼而有之。 CMF畸形患者常常存在心理问题。 CMF手术的目标是重建正常的面部外观和功能,并据此判断手术的结果。当前的问题是我们没有可靠的方法来模拟骨骼重建后的软组织变化。在治疗患有孤立性骨骼缺陷的患者时,目前 练习的目的是使骨骼正常化,希望获得最佳的面部外观。然而,由于软组织包膜的厚度和轮廓因患者而异,因此这种方法并不可靠。对于患有复合缺陷的患者来说,这个问题甚至更大。例如,在患有骨骼畸形和轻度软组织缺损的患者的情况下,外科医生在手术前必须知道如何过度矫正骨骼以掩盖软组织缺损。但是,只有通过精确的规划系统来模拟软组织变化才能获得此信息。此外,从患者的角度来看,最终的面部外观对他们来说是最明显的。因此,准确模拟软组织变形对于医生和患者来说都极其重要。 模拟方法必须准确且快速。实现这两个目标很困难,因为这些属性是负相关的,模型越准确,准备和运行所需的时间就越长。其中最有效的是基于经验的模型、质量弹簧模型、有限元模型和质量张量模型。不幸的是,它们要么太不准确,要么太慢,并且在临床上是不可接受的。 我们的假设是,通过我们的创新方法,使用解剖学上详细的建模和绘图程序以及统计建模技术,可以准确模拟虚拟截骨术后的面部软组织变化。为了检验我们的假设,我们建议开发一种开源新型成像信息学平台 eFace 系统,以准确模拟虚拟截骨术后的软组织变化,从而显着改善接受面部重建的患者的结果。该方法不仅可以保持复杂面部解剖结构的完整性以准确模拟面部软组织变形,而且可以显着提高计算效率以适应临床使用的要求该项目提出了一种创新的面部软组织建模方法形变。如果成功,它将能够准确模拟虚拟截骨术后的软组织变化。患者还能够在术前预见术后的面容(患者教育)并恢复心理自信。最后,eFace 将在正畸、整形外科、普通外科、生长/衰老预测和法医学等领域产生重大影响和应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James J Xia其他文献

James J Xia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James J Xia', 18)}}的其他基金

Outcome-Driven Approach to Minimize the Risks of Facial Distortion Following CMF Surgery
以结果为导向的方法,最大限度地降低 CMF 手术后面部变形的风险
  • 批准号:
    10225298
  • 财政年份:
    2013
  • 资助金额:
    $ 38.78万
  • 项目类别:
Outcome-Driven Approach to Minimize the Risks of Facial Distortion Following CMF Surgery
以结果为导向的方法,最大限度地降低 CMF 手术后面部变形的风险
  • 批准号:
    9895393
  • 财政年份:
    2013
  • 资助金额:
    $ 38.78万
  • 项目类别:
A Novel eFace System to Prevent the Risks of Facial Distortion after CMF Surgery
新型 eFace 系统可预防 CMF 手术后面部变形的风险
  • 批准号:
    8656620
  • 财政年份:
    2013
  • 资助金额:
    $ 38.78万
  • 项目类别:
A Novel eFace System to Prevent the Risks of Facial Distortion after CMF Surgery
新型 eFace 系统可预防 CMF 手术后面部变形的风险
  • 批准号:
    9233988
  • 财政年份:
    2013
  • 资助金额:
    $ 38.78万
  • 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
  • 批准号:
    8521242
  • 财政年份:
    2011
  • 资助金额:
    $ 38.78万
  • 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
  • 批准号:
    8512191
  • 财政年份:
    2011
  • 资助金额:
    $ 38.78万
  • 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
  • 批准号:
    8329617
  • 财政年份:
    2011
  • 资助金额:
    $ 38.78万
  • 项目类别:
A Novel Imaging Analysis Platform for Patients with Craniomaxillofacial Deformities
针对颅颌面畸形患者的新型影像分析平台
  • 批准号:
    9417942
  • 财政年份:
    2011
  • 资助金额:
    $ 38.78万
  • 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
  • 批准号:
    7948954
  • 财政年份:
    2011
  • 资助金额:
    $ 38.78万
  • 项目类别:
Computer Surgical Simulation for Craniofacial Surgery
颅面手术的计算机手术模拟
  • 批准号:
    7154276
  • 财政年份:
    2004
  • 资助金额:
    $ 38.78万
  • 项目类别:

相似国自然基金

ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
  • 批准号:
    82303993
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
  • 批准号:
    82371567
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
  • 批准号:
    52373051
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
  • 批准号:
    82302868
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单细胞多组学解析脐带间充质干细胞优势功能亚群重塑巨噬细胞极化治疗皮肤光老化的作用与机制
  • 批准号:
    82302829
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 38.78万
  • 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 38.78万
  • 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
  • 批准号:
    10848559
  • 财政年份:
    2023
  • 资助金额:
    $ 38.78万
  • 项目类别:
The predicative values of vascular and metabolic disorders for risk of incident mild cognitive impairment and dementia
血管和代谢紊乱对发生轻度认知障碍和痴呆风险的预测价值
  • 批准号:
    10661996
  • 财政年份:
    2023
  • 资助金额:
    $ 38.78万
  • 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
  • 批准号:
    10688715
  • 财政年份:
    2023
  • 资助金额:
    $ 38.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了