A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
基本信息
- 批准号:8512191
- 负责人:
- 金额:$ 20.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-07 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedArticulatorsCalculiClinicalCommunitiesComplexComputer AssistedComputer softwareComputersDeformityDentalDental ModelsDental OcclusionDental arch structureDentitionDrug FormulationsEdentulous MouthFaceFossaGoalsGoldHandHeadInternetJointsLeadMalocclusionMapsMaxillaMethodsModelingNatureOperative Surgical ProceduresOrthopedic Surgery proceduresOutcomePathologyPatientsPerformancePositioning AttributeProblem SolvingProcessResearchResearch PersonnelRestScanningSimulateSkeletonSource CodeSurfaceSurgeonSystemTechnologyThree-Dimensional ImageTimeTooth structureTraumaTreatment outcomeValidationX-Ray Computed Tomographybasecomputer generatedcomputerizedcostcost effectivecraniomaxillofacialcraniumdigitalexpectationimaging informaticsimprovedinnovationmedical specialtiesnovelnovel strategiesopen sourceoperationreconstructionsimulationsuccessthree-dimensional modelingvirtual
项目摘要
DESCRIPTION (provided by applicant): The ultimate goal of this project is to develop an open source novel imaging informatics platform, the AnatomicAligner, to improve the surgical planning method for craniomaxillofacial (CMF) surgery and subsequently to improve the treatment outcome of the patients with CMF deformities. CMF surgery involves the correction of congenital and acquired deformities of the skull and face. Due to the complex nature of the CMF skeleton, it requires extensive presurgical planning. Unfortunately, the traditional planning methods, e.g. prediction tracings and simulating surgery on stone models have remained unchanged over the last 50 years. Many unwanted surgical outcomes are the result of these deficient methods. To solve these problems, we have developed a Computer-Aided Surgical Simulation (CASS) system. Although it still needs significant improvements, the use of CASS has eliminated most of the limitations of the traditional methods. Unfortunately, it also creates a new problem that the digital establishment of dental occlusion becomes significantly more difficult. The dental articulation is an important step during the planning process to correct preexisting malocclusions or to surgically reestablish a new occlusion. The current gold standard is to utilize stone dental models and hand-articulate them on an articulator. Unfortunately, the same is not true in virtual world. These dental arches are 3D images. When the digital teeth are moved towards each other, they are not stopped by collision and continue to move through each other, which do not occur in real world. In order to completely solve these problems, it is critical to develop a new system that will integrate fully automated process of dental articulation and significantly improved our CASS technologies. Our hypotheses are that the occlusion can be digitally and automatically established in a computer planning system, and the computer-generated occlusion is as precise as the occlusion established by hand-articulating a set of stone models (the current gold standard). In order to prove our hypotheses, we are proposing three Specific Aims to develop and validate a novel imaging informatics platform, the AnatomicAligner, for CMF surgery. The system is innovative because for the first time, doctors will be able to efficiently and accurately plan the entire surgery in the computer, including automated establishment of dental occlusion. The new technical contributions include: 1) a robust 3D segmentation-based approach to achieve the initial digital dental model alignment; and 2) novel approaches for automated final digital articulation. The significance of this project is that the AnatomicAligner system will produce a paradigm shift in CMF planning. Surgeons will be able to completely abandon the problematic traditional methods for a more accurate, faster and cost effective method. The success of AnatomicAligner will lead to a new class of imaging informatics platform for CMF surgery. This platform can also be transformed to orthopedic surgery and other medical specialties. Once completed, the software (both source codes and executables) will be freely downloaded from internet by research community.
描述(由申请人提供):该项目的最终目标是开发一个开源的新型影像信息学平台 AnatomicAligner,以改进颅颌面(CMF)手术的手术计划方法,从而改善颅颌面手术患者的治疗结果CMF 畸形。 CMF 手术涉及矫正颅骨和面部的先天性和后天性畸形。由于 CMF 骨骼的复杂性,需要进行广泛的术前规划。不幸的是,传统的规划方法,例如过去50年来,石头模型上的预测追踪和模拟手术一直没有改变。许多不想要的手术结果都是这些有缺陷的方法造成的。为了解决这些问题,我们开发了计算机辅助手术模拟(CASS)系统。尽管仍需要重大改进,但 CASS 的使用消除了传统方法的大部分局限性。不幸的是,这也带来了一个新问题,即牙齿咬合的数字化建立变得更加困难。牙齿咬合是纠正先前存在的咬合不正或通过手术重建新咬合的计划过程中的重要步骤。当前的黄金标准是利用石制牙科模型并在咬合架上手动将其连接起来。不幸的是,在虚拟世界中情况并非如此。这些牙弓是 3D 图像。当数字牙齿相互移动时,它们不会因碰撞而停止,而是继续相互移动,这在现实世界中不会发生。 为了彻底解决这些问题,开发一种新系统至关重要,该系统将集成全自动牙科咬合过程并显着改进我们的 CASS 技术。我们的假设是,咬合可以在计算机规划系统中以数字方式自动建立,并且计算机生成的咬合与通过手工连接一组石材模型(当前的黄金标准)建立的咬合一样精确。为了证明我们的假设,我们提出了三个具体目标来开发和验证用于 CMF 手术的新型成像信息学平台 AnatomicAligner。该系统具有创新性,因为医生将首次能够在计算机中高效、准确地规划整个手术,包括自动建立牙齿咬合。新技术贡献包括:1) 强大的基于 3D 分割的方法,以实现初始数字牙科模型对齐; 2)自动最终数字清晰度的新颖方法。该项目的意义在于 AnatomicAligner 系统将在 CMF 规划中产生范式转变。外科医生将能够完全放弃有问题的传统方法,转而采用更准确、更快速且更具成本效益的方法。 AnatomicAligner 的成功将为 CMF 手术带来一类新型影像信息学平台。这个平台还可以转化为骨科等医学专科。一旦完成,该软件(源代码和可执行文件)将由研究社区从互联网上免费下载。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James J Xia其他文献
James J Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James J Xia', 18)}}的其他基金
Outcome-Driven Approach to Minimize the Risks of Facial Distortion Following CMF Surgery
以结果为导向的方法,最大限度地降低 CMF 手术后面部变形的风险
- 批准号:
10225298 - 财政年份:2013
- 资助金额:
$ 20.18万 - 项目类别:
Outcome-Driven Approach to Minimize the Risks of Facial Distortion Following CMF Surgery
以结果为导向的方法,最大限度地降低 CMF 手术后面部变形的风险
- 批准号:
9895393 - 财政年份:2013
- 资助金额:
$ 20.18万 - 项目类别:
A Novel eFace System to Prevent the Risks of Facial Distortion after CMF Surgery
新型 eFace 系统可预防 CMF 手术后面部变形的风险
- 批准号:
8439794 - 财政年份:2013
- 资助金额:
$ 20.18万 - 项目类别:
A Novel eFace System to Prevent the Risks of Facial Distortion after CMF Surgery
新型 eFace 系统可预防 CMF 手术后面部变形的风险
- 批准号:
8656620 - 财政年份:2013
- 资助金额:
$ 20.18万 - 项目类别:
A Novel eFace System to Prevent the Risks of Facial Distortion after CMF Surgery
新型 eFace 系统可预防 CMF 手术后面部变形的风险
- 批准号:
9233988 - 财政年份:2013
- 资助金额:
$ 20.18万 - 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
- 批准号:
8521242 - 财政年份:2011
- 资助金额:
$ 20.18万 - 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
- 批准号:
8329617 - 财政年份:2011
- 资助金额:
$ 20.18万 - 项目类别:
A Novel Imaging Analysis Platform for Patients with Craniomaxillofacial Deformities
针对颅颌面畸形患者的新型影像分析平台
- 批准号:
9417942 - 财政年份:2011
- 资助金额:
$ 20.18万 - 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
- 批准号:
7948954 - 财政年份:2011
- 资助金额:
$ 20.18万 - 项目类别:
Computer Surgical Simulation for Craniofacial Surgery
颅面手术的计算机手术模拟
- 批准号:
7154276 - 财政年份:2004
- 资助金额:
$ 20.18万 - 项目类别:
相似海外基金
Speech training system for the hearing impaired using articulators' motion trajectories
利用咬合架运动轨迹的听力障碍者言语训练系统
- 批准号:
23K02572 - 财政年份:2023
- 资助金额:
$ 20.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cortical and subcortical underpinnings of typical and dysarthric speech - Resubmission - 1
典型和构音障碍言语的皮质和皮质下基础 - 重新提交 - 1
- 批准号:
10822457 - 财政年份:2023
- 资助金额:
$ 20.18万 - 项目类别:
Predictors of Speech Motor Sequence Learning in Neurological Disorders
神经系统疾病中言语运动序列学习的预测因素
- 批准号:
10626846 - 财政年份:2022
- 资助金额:
$ 20.18万 - 项目类别:
Predictors of Speech Motor Sequence Learning in Neurological Disorders
神经系统疾病中言语运动序列学习的预测因素
- 批准号:
10535101 - 财政年份:2022
- 资助金额:
$ 20.18万 - 项目类别:
Determination of the motor patterning system for murine vocalizations with breathing
小鼠呼吸发声运动模式系统的测定
- 批准号:
10593984 - 财政年份:2022
- 资助金额:
$ 20.18万 - 项目类别: