Cyclodextrin-based Microparticle Polymer Formulations for the Slow and Sustained
用于缓慢和持续的环糊精基微粒聚合物配方
基本信息
- 批准号:8250887
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenActivities of Daily LivingAffinityAnimal ModelAnimal TestingAnimalsAntibioticsBacteriaBindingBiological AssayCaringCharacteristicsChronicClinicalContractsCyclodextrinsDataDefectDevicesDiffusionDrug Delivery SystemsDrug FormulationsDrug KineticsExcisionFlushingFutureGoalsHealthcare SystemsHerniaImplantIn VitroIncidenceInfectionInfection preventionInfectious AgentInjuryInterventionIntestinesLaparotomyLeadLicensingLifeMarketingMeasuresMedical DeviceMedical Device FailuresModelingObesityOperative Surgical ProceduresOutcomePathway interactionsPatientsPharmaceutical PreparationsPhasePolymersPositioning AttributePreventionProceduresProductionProsthesisPublic HealthRifampinSepsisSiteSkinSmall Business Innovation Research GrantSolutionsSterile coveringsSterilityTechnologyTestingTherapeuticTherapeutic UsesTimeTissuesTranslatingTranslationsTreatment EfficacyUnited StatesUniversitiesValidationVentral HerniaWorkWound Infectionaging populationbactericidebasecommercial applicationcontrolled releasecostimplantable deviceimplantationin vivoinnovationkillingsmicrobicidemouse modelparticlepathogenphase 1 studypreventrepairedscale upstandard of caresuccesstherapeutic effectivenesswound
项目摘要
DESCRIPTION (provided by applicant): One of the leading causes of failure for medical devices is infection. In particular synthetic mesh infections after ventral hernia repair are a common surgical problem with no ideal solution often requiring implant excision through costly morbid interventions. Options to prevent short and long term mesh infections are suboptimal. This situation calls for an urgent solution as prosthetics are universally used in hernia surgery. Our long-term goal is to provide an affinity-based microparticle formulation capable of preventing or treating hernia mesh infections by locally delivering therapeutic levels of antibiotics. The objective of this proposal is to develop an affinity-based microparticle formulation and demonstrate that it is comparable in effect to previously investigated hernia mesh coatings developed at Case Western Reserve University, which were able to prevent mesh infections but faced a complicated translation pathway as a device coating. The affinity-based microparticle formulations generated in this study will be evaluated in the long- term prevention and treatment of mesh sepsis in an infected chronic hernia repair model. The central hypothesis is that sustained, long-term local; delivery of antibiotics from a microparticle formulation can effectively treat and eradicate common bacterial pathogens involved in hernia mesh site infections comparable to that of a coated mesh. This work will be accomplished in three aims:1) Produce affinity- based antibiotic delivery microparticles and characterize them both physically and chemically; 2) Validate the microbicidal effect of delivery platform in vitro by treating bacterial lawns and evaluating therapeutic efficacy; and 3) Demonstrate that treatment and prevention of device infection in vivo by examining effects of polymer coated prosthetics on durability of hernia repair, and evaluating long-term (30-day) release of therapeutic levels of antibiotics from the microparticles. Our proposed work is innovative; it uses a local, sustained approach to achieve an infection-free prosthetic. The expected outcomes include a product which has a more realistic translation likelihood than device coatings, namely as a stand-alone platform. These results will positively impact the field of general surgery by providing a solution to a vexing problem that has complicated surgical care since meshes were introduced nearly 50 years ago. Future work in Phase II will translate these concepts into other surgically placed devices, surgical site infections, and wound dressings in general.
PUBLIC HEALTH RELEVANCE: This proposal is critically concerned with the issue of public health in that its long term goal is to provide an affinity-based microparticle formulation capable of preventing or treating hernia mesh infections by locally delivering therapeutic levels of antibiotics. The short-term goals are to generate a stand-alone microparticle formulation that will be used to concurrently with hernia repair meshes at the time of implantation and then load them with therapeutic antibiotics to treat the most prevalent infectious organisms, without impacting the capacity of that mesh to adequately perform as a durable hernia repair prosthetic. We will assess the efficacy of delivery using a chronic infection mouse model developed at Case Western Reserve University.
描述(由申请人提供):医疗器械失效的主要原因之一是感染。特别是腹疝修复后的合成网片感染是一个常见的外科问题,没有理想的解决方案,通常需要通过昂贵的病态干预措施切除植入物。预防短期和长期网状感染的选项并不理想。由于疝气手术普遍使用假肢,这种情况需要紧急解决。我们的长期目标是提供一种基于亲和力的微粒制剂,能够通过局部递送治疗水平的抗生素来预防或治疗疝网感染。该提案的目的是开发一种基于亲和力的微粒制剂,并证明其效果与之前研究的凯斯西储大学开发的疝气网涂层相当,后者能够预防网状感染,但面临着复杂的翻译途径,因为器件涂层。本研究中产生的基于亲和力的微粒制剂将在感染的慢性疝气修复模型中的网状败血症的长期预防和治疗中进行评估。中心假设是持续的、长期的局部;与涂层网片相比,微粒制剂输送抗生素可以有效治疗和根除与疝气网片部位感染有关的常见细菌病原体。这项工作将实现三个目标:1)生产基于亲和力的抗生素递送微粒并对其进行物理和化学表征; 2)通过处理菌苔并评价疗效,验证递送平台的体外杀菌效果; 3) 通过检查聚合物涂层假体对疝气修复持久性的影响,并评估微粒中抗生素治疗水平的长期(30 天)释放,证明体内装置感染的治疗和预防。我们提出的工作是创新的;它采用局部、持续的方法来实现无感染的假肢。预期的结果包括一种比设备涂层具有更现实的转化可能性的产品,即作为一个独立的平台。这些结果将为普通外科领域带来积极影响,为自近 50 年前引入网格以来使外科护理变得复杂的棘手问题提供解决方案。第二阶段的未来工作将把这些概念转化为其他手术放置的设备、手术部位感染和一般伤口敷料。
公共健康相关性:该提案与公共健康问题密切相关,因为其长期目标是提供一种基于亲和力的微粒制剂,能够通过局部输送治疗水平的抗生素来预防或治疗疝气网感染。短期目标是产生一种独立的微粒制剂,在植入时与疝气修复网同时使用,然后在其中装载治疗性抗生素来治疗最流行的感染性生物体,而不影响其能力网片足以作为耐用的疝气修复假体。我们将使用凯斯西储大学开发的慢性感染小鼠模型来评估递送效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julius N. Korley其他文献
Colloid crystal self-organization and dynamics at the air/water interface
- DOI:
10.1038/30930 - 发表时间:
1998-06-01 - 期刊:
- 影响因子:64.8
- 作者:
H. Wickman;Julius N. Korley;Julius N. Korley;Julius N. Korley - 通讯作者:
Julius N. Korley
Julius N. Korley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julius N. Korley', 18)}}的其他基金
Increasing IDeA state Biomedical Entrepreneurship via Ecosystem, Enterprises & Experts
通过生态系统、企业增加 IDeA 州生物医学创业精神
- 批准号:
10761120 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Cyclodextrin-based Microparticle Polymer Formulations for the Slow and Sustained
用于缓慢和持续的环糊精基微粒聚合物配方
- 批准号:
8449222 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
相似国自然基金
老年期痴呆患者基础性日常生活活动能力损害的认知神经心理学基础及测量优化
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于VR技术的养老机构老年人ADL康复训练和评估量化体系构建及应用研究
- 批准号:81902295
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Tissue-Specific Soluble Platelet-Derived Growth Factor Receptor-beta Isoform Retains Functional Capacity
组织特异性可溶性血小板衍生生长因子受体-β亚型保留功能能力
- 批准号:
10668031 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Improving CAR-T efficacy against solid tumors by expanding lymph node reservoirs of “stem-like” CAR-T cells
通过扩大“干细胞样”CAR-T 细胞的淋巴结储存库来提高 CAR-T 对抗实体瘤的疗效
- 批准号:
10734686 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Understanding antibody responses and defining correlates of protection for endemic and pandemic coronavirus strains
了解抗体反应并定义地方性和大流行性冠状病毒株保护的相关性
- 批准号:
10549479 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别: