Systems microscopy analysis of tumor cell motility in microenvironment context

微环境背景下肿瘤细胞运动的系统显微镜分析

基本信息

项目摘要

DESCRIPTION (provided by applicant): Candidate: Majoring as analytical chemist during the time in Belgrade, Serbia, Dr. Gligorijevic has become an expert in optics and live cell microscopy over the course of her graduate training at Georgetown University and developed several novel microscopy-based technologies. During the postdoctoral period, Dr. Gligorijevic has focused on studying tumor cell intravasation in breast tumors, in living animals. To do so, she introduced several advancements into in vivo multiphoton microscopy. Dr. Gligorijevic is funded by DOD and Charles Revson Fellowship and has received several honors for her research. Her work to date resulted in one patent, ten peer-reviewed and ten other publications. Recent research has shown that different components of tumor microenvironment have an essential role in tumor progression. In order to decipher the network of interactions which shape the tumor environment and determine tumor cell behavior, it is ideal to apply systems biology approaches combined with in vivo microscopy, as cell cultures are limited in their complexity, mouse models are time-consuming and expensive and in silico models need optimization based on experiments. During the mentored phase of the Award, Dr. Gligorijevic will incorporate the relevant principles of advanced statistics and mathematical modeling of dynamical systems into her background of tumor biology and microscopy. She will take coursework offered at Einstein and meet regularly with her sponsor and co-sponsor. This training will make it possible to build a laboratory which investigates mechanisms of metastasis using the integrative, systems microscopy approach and utilizing information from molecular to population levels. Environment: Sponsor of the PI, Dr. John Condeelis is a Co-Chair of Anatomy Department and Biophotonic Center at Einstein. His lab and the Center create a multidisciplinary environment focused on answering mechanisms of human diseases, such as cancer, through use of microscopy. The Center is well known for its shared imaging resources and Innovation Laboratory where new microscopy systems are custom-built to accommodate specific needs of different projects. Consulting member of Advisory Committee, Dr. Robert Singer, is an expert in combining experimental and theoretical biology and a renowned mentor. The co-sponsor, Dr. Aviv Bergman, is the Founding Chair of Systems Department at Einstein and teaches coursework which will be a part of the career development. Einstein is an institution which highly values collaboration and insists on career development of postdoctoral fellows, instructors and junior faculty. Research: While most research of tumor microenvironments focuses on isolating and understanding single parameters, an integrative, systems-level network of interactions among relevant biological players is missing. In primary tumors, there are numerous biomechanical signals able to direct tumor cell movement towards and into the blood vessels. Growth factors, secreted by host macrophages, fibroblasts and endothelial cells in the tumor microenvironment are the main chemoattractants but recent studies show that the extracellular matrix also plays an important role. In loose extracellular matrix, tumor cells can migrate by reorganizing their cytoskeleton, generating a protrusive force. In regions with stiff extracellular matrix, simple locomotion is not possible. Here, tumor cells become invasive and degrade extracellular matrix, mainly by matrix metalloproteases (MMPs). Tumor cell migration was well characterized in vivo, but the mechanism of the switch from locomotory to invasive state and assembly of invasive protrusions in vivo are unknown. To address the link between integrated microenvironment signaling and the tumor cell behavior, it is necessary to combine cell biology, advanced microscopy and systems biology. In preliminary experiments, tumor cells were recorded using time-resolved 3D multiphoton imaging in living mice and two different protrusion types were observed: a) locomotory protrusions which quickly lead to migration of the tumor cell and b) invasive protrusions, which are persistent and MMP-dependent. The goal of Aim 1 is to investigate the role of invasive protrusions in the tumor cell intravasation and metastasis. A combination of fluorescent reporters will be used for imaging of invasive protrusion assembly and investigation of consequent tumor cell fate. Aim 2 explores signals which drive tumor cells to form either locomotory or invasive protrusions or to switch between behaviors. In areas which contain either locomotory or invasive protrusions, tumor microenvironment parameters are recorded simultaneously (number of macrophages, collagen stiffness, blood vessel size etc.). Imaging analysis results in a data matrix, which is analyzed by a Support Vector Machine classification. Classification shows that tumor cells switch from locomotory to invasive states under very specific conditions. Proposed experiments test the hypothesis that tumor cell behavior can be changed by slightly modifying microenvironment parameters. Relevant microenvironment parameters are incorporated into an integrative mathematical model of the tumor cell switch from locomotory to invasive state, in Aim 3. Using the predictive power of the model, experiments were designed to inhibit the invasive state and subsequent metastasis. Experimental outcomes will be used to optimize and complexify the model. Results of this study will lead to better understanding of the interplay among microenvironment components during tumor progression and the results will be used to improve diagnosis and treatment of early metastasis.
描述(由申请人提供): 候选人:在贝尔格莱德(Belgrade)的塞尔维亚(Serbia),格利戈里耶维奇(Gligorijevic)博士在乔治敦大学(Georgetown University)的研究生培训过程中,塞尔维亚(Gligorijevic)博士在贝尔格莱德(Belgrade)主修分析化学家,并开发了几种基于显微镜的技术。在博士后期间,Gligorijevic博士的重点是研究乳腺肿瘤的肿瘤细胞侵入,活跃的动物。为此,她将几个进步引入了体内多光子显微镜中。 Gligorijevic博士由DOD和Charles Revson奖学金资助,并为她的研究获得了几项荣誉。迄今为止,她的工作导致了一项专利,十项经过同行评审和其他十个出版物。最近的研究表明,肿瘤微环境的不同成分在肿瘤进展中具有至关重要的作用。为了破译塑造肿瘤环境并确定肿瘤细胞行为的相互作用网络,非常适合应用系统生物学方法与体内显微镜结合使用,因为细胞培养在其复杂性上受到限制,小鼠模型是耗时且昂贵的,并且在实验中需要优化硅模型。在该奖项的指导阶段,Gligorijevic博士将将动态系统的高级统计和数学模型的相关原则纳入她的肿瘤生物学和显微镜背景。她将在爱因斯坦(Einstein)提供课程,并定期与她的赞助商和共同赞助商会面。该培训将使建立一个实验室,该实验室使用综合,系统显微镜方法研究转移机制,并利用从分子到人群水平的信息。 环境:PI的赞助商,John Condeelis博士是爱因斯坦解剖学部和生物摄影中心的联合主席。他的实验室和中心创造了一个多学科环境,旨在通过使用显微镜来解决人类疾病(例如癌症)的机制。该中心以其共享的成像资源和创新实验室而闻名,在该实验室中,新的显微镜系统是定制的,以满足不同项目的特定需求。咨询委员会的咨询会员罗伯特·辛格(Robert Singer)博士是结合实验和理论生物学和著名导师的专家。共同发起人Aviv Bergman博士是爱因斯坦系统部门的创始主席,并教授课程,这将成为职业发展的一部分。爱因斯坦(Einstein)是一家高度重视合作的机构,并坚持博士后研究员,讲师和初级教师的职业发展。 研究:尽管大多数肿瘤微环境的研究都集中在隔离和理解单个参数上,但缺少相关生物参与者之间的集成,系统级相互作用网络。在原发性肿瘤中,有许多生物力学信号能够将肿瘤细胞运动引向血管和血管。肿瘤微环境中宿主巨噬细胞,成纤维细胞和内皮细胞分泌的生长因子是主要的趋化因子,但最近的研究表明,细胞外基质也起着重要作用。在松散的细胞外基质中,肿瘤细胞可以通过重组其细胞骨架来迁移,从而产生突出的力。在具有僵硬的细胞外基质的区域中,不可能进行简单的运动。在这里,肿瘤细胞成为侵入性并降解细胞外基质,主要通过基质金属蛋白酶(MMP)。肿瘤细胞迁移在体内的特征很好,但是从运动到浸润状态和体内侵入性突起的组装的切换的机制尚不清楚。为了解决综合微环境信号传导与肿瘤细胞行为之间的联系,有必要结合细胞生物学,晚期显微镜和系统生物学。在初步实验中,使用时间分辨的3D多光子成像记录了活小鼠的肿瘤细胞,并观察到两种不同的突起类型:a)运动型突起,这些突起迅速导致肿瘤细胞的迁移,b)侵入性突起,这些突起持续且依赖于MMP。目标1的目的是研究侵入性突起在肿瘤细胞插入和转移中的作用。荧光记者的组合将用于成像浸润性突起组装和随之而来的肿瘤细胞命运的研究。 AIM 2探索信号,这些信号驱动肿瘤细胞形成运动或侵入性突起或在行为之间切换。在包含运动或侵入性突起的区域中,同时记录肿瘤微环境参数(巨噬细胞的数量,胶原蛋白刚度,血管大小等)。成像分析导致数据矩阵,该矩阵通过支持向量机分类进行分析。分类表明,在非常特异性的条件下,肿瘤细胞从机动性转变为侵入性状态。提出的实验检验了可以通过稍微修改微环境参数来改变肿瘤细胞行为的假设。相关的微环境参数被纳入从运动3到侵入性状态的肿瘤细胞开关的整合数学模型,在AIM 3中。使用模型的预测能力,设计实验旨在抑制侵入性状态和随后的转移。实验结果将用于优化和复杂模型。这项研究的结果将使对肿瘤进展过程中微环境成分之间的相互作用更好地了解,结果将用于改善早期转移的诊断和治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bojana Gligorijevic其他文献

Bojana Gligorijevic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bojana Gligorijevic', 18)}}的其他基金

Targeting invadopodia-related mechanisms of cancer cell invasion and metastasis
针对癌细胞侵袭和转移的侵袭伪足相关机制
  • 批准号:
    9918267
  • 财政年份:
    2019
  • 资助金额:
    $ 14.04万
  • 项目类别:
Targeting invadopodia-related mechanisms of cancer cell invasion and metastasis
针对癌细胞侵袭和转移的侵袭伪足相关机制
  • 批准号:
    10381493
  • 财政年份:
    2019
  • 资助金额:
    $ 14.04万
  • 项目类别:
Targeting invadopodia-related mechanisms of cancer cell invasion and metastasis
针对癌细胞侵袭和转移的侵袭伪足相关机制
  • 批准号:
    10613490
  • 财政年份:
    2019
  • 资助金额:
    $ 14.04万
  • 项目类别:
Systems microscopy analysis of tumor cell motility in microenvironment context
微环境背景下肿瘤细胞运动的系统显微镜分析
  • 批准号:
    8716702
  • 财政年份:
    2013
  • 资助金额:
    $ 14.04万
  • 项目类别:

相似海外基金

Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
  • 批准号:
    10663605
  • 财政年份:
    2023
  • 资助金额:
    $ 14.04万
  • 项目类别:
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
  • 批准号:
    10643145
  • 财政年份:
    2023
  • 资助金额:
    $ 14.04万
  • 项目类别:
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
  • 批准号:
    10753675
  • 财政年份:
    2023
  • 资助金额:
    $ 14.04万
  • 项目类别:
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
  • 批准号:
    10785755
  • 财政年份:
    2023
  • 资助金额:
    $ 14.04万
  • 项目类别:
Testing Approaches to Promote Breast Cancer Screening in Rural Ghana
促进加纳农村地区乳腺癌筛查的测试方法
  • 批准号:
    10645446
  • 财政年份:
    2023
  • 资助金额:
    $ 14.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了