Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease

阿尔茨海默病神经解剖学的内在建模和跟踪

基本信息

  • 批准号:
    8758885
  • 负责人:
  • 金额:
    $ 16.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-04-01 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Project Summary/Abstract Neuroimaging plays an increasingly important role in the early diagnosis of Alzheimer's disease (AD). The availability of data from large scale, multi-site studies, such as the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Dominantly Inherited Alzheimer's Network (DIAN), provide unprecedented opportunities of improving our understanding of this complicated disease. On the other hand, these large scale, high dimensional imaging data of ever growing size call for the urgent needs of developing and validating robust and automated mapping tools. To become in independent investigator of brain imaging research in AD, the candidate proposes in this K01 application to receive training in multimodal image analysis, clinical diagnosis of AD, MR imaging techniques, and biostatistics. These training activities will greatly augment the candidate's background in neuroimage analysis and establish a solid foundation for his long term goal of being a leading researcher in computer-aided early diagnosis of AD. In the research plan, the candidate will develop and validate a suite of novel tools for the mapping of neuroanatomy during the development and progression of AD using intrinsic geometry of the anatomical structure. In contrast to conventional approaches that align brains in a canonical Euclidean space such as the Talairach atlas, the candidate models the anatomy intrinsically with the eigenfunctions of the Laplace-Beltrami (LB) operator and their Reeb graphs. This spectral approach is invariant to natural pose variations, robust to geometric deformations due to pathology and disease progression, and leads to novel methods for surface reconstruction, modeling, and mapping. The specific aims are: 1. Validate and continue to develop an intrinsic framework for the mapping of sub-cortical structures based on the LB eigenfunctions. 2. Develop and validate an automated system for cortical surface extraction, major sulci identification, and mapping. 3. Develop and validate novel algorithms for multimodal fusion with cortical mapping. The new algorithms will be validated with cognitive measures using data from ADNI and DIAN, and compared with existing methods in terms of the discrimination power in the early diagnosis of AD. The software tools developed in this project will be distributed publicly.
描述(由申请人提供):项目摘要/摘要神经影像学在早期诊断阿尔茨海默氏病(AD)中起越来越重要的作用。来自大规模的多站点研究的数据的可用性,例如阿尔茨海默氏病神经影像学计划(ADNI)和主要遗传的阿尔茨海默氏症网络(DIAN),提供了前所未有的机会,可以提高我们对这种复杂疾病的理解。另一方面,这些尺寸不断增长的大规模,高维成像数据需要开发和验证可靠和自动化的映射工具的紧急需求。为了成为AD中脑成像研究的独立研究者,该候选人建议在此K01应用中接受多模式图像分析,AD临床诊断,MR成像技术和生物统计学的培训。这些培训活动将大大扩大候选人在神经图像分析方面的背景,并为他的长期目标是成为AD的计算机辅助早期诊断的长期目标。在研究计划中,候选人将使用解剖结构的固有几何形状在AD的开发和进展过程中开发和验证一套新的新工具,用于在AD开发和进展过程中映射神经解剖学。与常规的方法相比,在诸如Talairach Atlas之类的规范欧几里得空间中对齐大脑的常规方法,候选人本质上与Laplace-Beltrami(LB)操作员及其REEB图的特征性函数本质上对解剖结构进行了建模。这种光谱方法是自然姿势变化的不变,由于病理和疾病进展而导致的几何变形,并导致了表面重建,建模和映射的新方法。具体目的是:1。验证并继续开发一个基于LB本征函数的亚皮质结构映射的内在框架。 2。开发和验证自动化系统,以进行皮质表面提取,主要的沟识别和映射。 3。开发和验证新型算法,用于用皮质映射进行多模式融合。新算法将使用ADNI和DIAN的数据对认知措施进行验证,并将其与现有方法在AD早期诊断中的歧视能力方面进行验证。该项目中开发的软件工具将公开分发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yonggang Shi其他文献

Yonggang Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yonggang Shi', 18)}}的其他基金

Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
  • 批准号:
    10667903
  • 财政年份:
    2023
  • 资助金额:
    $ 16.66万
  • 项目类别:
Tau-induced connectome imaging markers of Alzheimer's disease
Tau 诱导的阿尔茨海默病连接组成像标志物
  • 批准号:
    10062748
  • 财政年份:
    2020
  • 资助金额:
    $ 16.66万
  • 项目类别:
Brainstem connectomes related to Alzheimer's disease
与阿尔茨海默病相关的脑干连接体
  • 批准号:
    9524584
  • 财政年份:
    2018
  • 资助金额:
    $ 16.66万
  • 项目类别:
Project: TR&D 3 (Intrinsic Shape Analysis)
项目:TR
  • 批准号:
    9480330
  • 财政年份:
    2016
  • 资助金额:
    $ 16.66万
  • 项目类别:
Surface-Based Fiber Tracking and Modeling Techniques for Mapping the Superficial White Matter Connectome with Diffusion MRI
基于表面的纤维跟踪和建模技术,用于利用扩散 MRI 绘制浅表白质连接组图
  • 批准号:
    10588001
  • 财政年份:
    2016
  • 资助金额:
    $ 16.66万
  • 项目类别:
Computational Tools for Modeling Human and Mouse Connectome with Multi-Shell Diffusion Imaging
利用多壳扩散成像对人类和小鼠连接组进行建模的计算工具
  • 批准号:
    9768460
  • 财政年份:
    2016
  • 资助金额:
    $ 16.66万
  • 项目类别:
Computational Tools for Modeling Human and Mouse Connectome with Multi-Shell Diffusion Imaging
利用多壳扩散成像对人类和小鼠连接组进行建模的计算工具
  • 批准号:
    9356511
  • 财政年份:
    2016
  • 资助金额:
    $ 16.66万
  • 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
  • 批准号:
    8646917
  • 财政年份:
    2012
  • 资助金额:
    $ 16.66万
  • 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
  • 批准号:
    8164121
  • 财政年份:
    2012
  • 资助金额:
    $ 16.66万
  • 项目类别:
Intrinsic Modeling and Tracking of Neuroanatomy in Alzheimer's Disease
阿尔茨海默病神经解剖学的内在建模和跟踪
  • 批准号:
    9039077
  • 财政年份:
    2012
  • 资助金额:
    $ 16.66万
  • 项目类别:

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 16.66万
  • 项目类别:
A software tool to facilitate variable-level equivalency and harmonization in research data: Leveraging the NIH Common Data Elements Repository to link concepts and measures in an open format
促进研究数据中变量级别等效性和协调性的软件工具:利用 NIH 通用数据元素存储库以开放格式链接概念和测量
  • 批准号:
    10821517
  • 财政年份:
    2023
  • 资助金额:
    $ 16.66万
  • 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
  • 批准号:
    10603902
  • 财政年份:
    2023
  • 资助金额:
    $ 16.66万
  • 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
  • 批准号:
    10735564
  • 财政年份:
    2023
  • 资助金额:
    $ 16.66万
  • 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
  • 批准号:
    10816864
  • 财政年份:
    2023
  • 资助金额:
    $ 16.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了