Passive Mobile Self-Tracking of Mental Health by Veterans with Serious Mental Illness
患有严重精神疾病的退伍军人的心理健康被动移动自我跟踪
基本信息
- 批准号:10249984
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdherenceAgeAreaAwarenessBehaviorBehavior monitoringBusinessesCategoriesCellular PhoneClinicalCommunicationDataData AnalysesData ReportingData SecurityDevelopmentDiagnosisEarly InterventionEducational process of instructingFeasibility StudiesFeedbackFocus GroupsGoalsHabitsHealth StatusHealthcareHomelessnessHospitalizationImprisonmentIndividualInformaticsInstitutional Review BoardsInterventionInterviewJob lossLightLocationMeasuresMental HealthMental Health ServicesMethodologyMethodsModelingMonitorMovementOwnershipPatientsPersonsPharmaceutical PreparationsPilot ProjectsPopulationPredictive ValuePrivacyRelapseReportingResearchResearch MethodologyResearch PersonnelRiskRisk BehaviorsSafetySecuritySelf ManagementSigns and SymptomsSleepSocial InteractionStressSubstance abuse problemSuicideSymptomsTelephoneTestingTimeUncertaintyVeteransVisitWorkacceptability and feasibilityanalytical methodbehavior changebehavior predictiondata exchangedata privacyeffectiveness studyeffectiveness/implementation studyhandheld mobile devicehigh dimensionalityimprovedinnovationinterestmedication compliancemembermilitary veteranmobile applicationmobile computingmobile phone based interventionmobile sensingmobile sensornovel strategiesperceived stresspilot testpsychiatric symptompsychotic-like experiencesrapid detectionrelapse risksensorservice utilizationsevere mental illnesssmartphone applicationsoundtherapy developmenttooltransmission processtreatment and outcometreatment as usualusabilityuser centered design
项目摘要
Background: Serious mental illnesses are common, disabling, challenging to treat, and require years
of monitoring with adjustments in treatments. Stress or reduced medication adherence can lead to rapid
worsening in symptoms and functioning with consequences that include relapse, job loss, homelessness,
incarceration, hospitalization and suicide. In usual care, clinician visits are infrequent, with intervals ranging
from monthly to yearly. Communication between patients and clinicians between visits is challenging and often
nonexistent. Patient illness exacerbations and relapses generally occur with little or no clinician awareness in
real time, leaving little opportunity to adjust treatments.
Significance/Impact: For the large population of Veterans with serious mental illness, tools are
needed that passively monitor their mental health status, allowing them to self-track their behaviors, quickly
detect worsening of mental health, and support prompt assessment and intervention. At least 60% of Veterans
with serious mental illness use a smart phone. These generate data that characterize sociability, activity, and
sleep. Changes in these behaviors are warning signs of relapse. Passive self-tracking could be used to identify
and predict worsening of illness in real time.
Innovation: Passive mobile sensing is a novel approach to illness self-tracking and monitoring. There
has been relatively little research on passive self-tracking in serious mental illness, with limited analytics
development in this area, and none in VA.
Specific Aims: This project studies passive mobile sensing with Veterans in treatment for serious
mental illness. Data are used for self-tracking of behaviors and symptoms. While passive mobile sensing has
been feasible, acceptable and safe in patients with serious mental illness, these are studied for the first time in
VA. Analytics are developed that use passive data to predict behaviors and symptoms. This project responds to
the HSR&D priority areas of Mental Health and Healthcare Informatics. The project has these objectives:
1. Conduct user-centered design of passive mobile self-tracking to support Veterans’ management of
their mental health.
2. Study the feasibility, acceptability and safety of passive self-tracking of mental health that includes
feedback of mental health status to the Veteran.
3. Use mobile sensor and phone utilization data to develop individualized estimates of sociability,
activities, and sleep as measured by weekly interviews.
4. Study the predictive value of using data on sociability, activities, and sleep to identify exacerbations
of psychiatric symptoms.
Methodology: Activities can be assessed with data on movement, location, and habits. Sociability can
be assessed with data on communication and public interactions. Sleep can be assessed using data on light,
sound, movement, and phone use. Investigators on this project developed “mWellness,” a functional mobile
app that monitors and transmits mobile sensor and utilization data. Focus groups and in-lab usability testing
will inform further app and intervention development. Mixed methods research will study deployment in
Veterans who passively self-track their behaviors and psychiatric symptoms. If this project meets intended
goals, the VA will have a mobile analytics platform that continuously monitors the behaviors and symptoms of
patients with serious mental illness.
Next Steps/Implementation: Results inform development of a study of the effectiveness and
implementation of these methods to improve Veteran assessment, treatment and outcomes. Results are also
applicable to other populations with mental health risk and to the use of similar methods in usual care.
背景:严重的精神疾病很常见、致残、治疗具有挑战性,并且需要数年时间
通过调整治疗进行监测或减少药物依从性可能会导致快速缓解。
症状和功能恶化,后果包括复发、失业、无家可归、
监禁、住院和自杀 在常规护理中,临床医生就诊的频率不高,且间隔时间不等。
从每月到每年,患者和士兵之间的沟通经常充满挑战。
患者病情恶化和复发通常在临床医生很少或没有意识到的情况下发生。
实时,几乎没有机会调整治疗。
意义/影响:对于大量患有严重精神疾病的退伍军人来说,工具是
需要被动地监测他们的心理健康状况,使他们能够快速自我跟踪自己的行为
发现心理健康状况恶化,并支持及时评估和干预至少 60% 的退伍军人。
患有严重精神疾病的人会使用智能手机,这些数据会生成表征社交能力、活动和行为的数据。
这些行为的变化是旧病复发的警告信号,可以用来识别旧病复发的迹象。
并实时预测病情恶化。
创新:被动移动传感是一种疾病自我跟踪和监测的新颖方法。
关于严重精神疾病的被动自我追踪的研究相对较少,分析有限
这一领域的发展,而弗吉尼亚州则没有。
具体目标:该项目研究了退伍军人的被动移动传感技术,用于治疗严重的
数据用于自我跟踪行为和症状,而被动移动传感则可以。
对于患有严重精神疾病的患者来说,这是可能的、可接受的和安全的,这是首次在
VA. 开发了使用被动数据来预测行为和症状的分析方法。
HSR&D 心理健康和医疗保健信息学的优先领域该项目有以下目标:
1.以用户为中心设计被动式移动自我追踪,支持退伍军人管理
他们的心理健康。
2. 研究心理健康被动自我追踪的可行性、可接受性和安全性,包括
向退伍军人反馈心理健康状况。
3. 使用移动传感器和电话使用数据来开发个性化的社交能力估计,
活动和睡眠(通过每周访谈进行测量)。
4. 研究使用社交、活动和睡眠数据来识别病情加重的预测价值
的精神症状。
方法:可以通过运动、位置和习惯的数据来评估活动。
可以使用通信和公共互动的数据来评估睡眠,可以使用光的数据来评估。
该项目的研究人员开发了“mWellness”,一款功能性手机。
监控和传输移动传感器和利用率数据的应用程序。
将为进一步的应用程序和干预开发提供信息,混合方法研究将研究部署。
退伍军人被动地自我跟踪他们的行为和精神症状,如果这个项目符合预期。
为了实现目标,退伍军人事务部将拥有一个移动分析平台,持续监控患者的行为和症状
患有严重精神疾病的患者。
后续步骤/实施:结果为有效性和有效性研究的开展提供信息
实施这些方法还可以改善退伍军人的评估、治疗和结果。
适用于其他有心理健康风险的人群以及在日常护理中使用类似的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander S. Young其他文献
Biobehavioral treatment and rehabilitation of schizophrenia
精神分裂症的生物行为治疗和康复
- DOI:
10.1016/s0005-7894(05)80147-9 - 发表时间:
1994 - 期刊:
- 影响因子:3.7
- 作者:
Robert Paul Liberman;A. Kopelowicz;Alexander S. Young - 通讯作者:
Alexander S. Young
Application of Information Technology: A Network-Based System to Improve Care for Schizophrenia: The Medical Informatics Network Tool (MINT)
信息技术的应用:改善精神分裂症护理的网络系统:医学信息网络工具(MINT)
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Alexander S. Young;Jim Mintz;Amy N. Cohen;Matthew J. Chinman - 通讯作者:
Matthew J. Chinman
Alexander S. Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander S. Young', 18)}}的其他基金
PACT TO IMPROVE HEALTH CARE IN PEOPLE WITH SERIOUS MENTAL ILLNESS (SMI-PACT)
改善严重精神疾病患者医疗保健的协议 (SMI-PACT)
- 批准号:
8412363 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Implementing patient-centered decision support for mental health
实施以患者为中心的心理健康决策支持
- 批准号:
8717734 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Implementing patient-centered decision support for mental health
实施以患者为中心的心理健康决策支持
- 批准号:
8584127 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Web-Based Weight Management for Individuals with Mental Illness
针对精神疾病患者的基于网络的体重管理
- 批准号:
8084142 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Web-Based Weight Management for Individuals with Mental Illness
针对精神疾病患者的基于网络的体重管理
- 批准号:
7875624 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Web-Based Weight Management for Individuals with Mental Illness
针对精神疾病患者的基于网络的体重管理
- 批准号:
8268468 - 财政年份:2010
- 资助金额:
-- - 项目类别:
相似国自然基金
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视网膜色素上皮细胞中NAD+水解酶SARM1调控自噬溶酶体途径参与年龄相关性黄斑变性的机制研究
- 批准号:82301214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Full participation of people with physical disabilities in active eSports
身体残疾人士充分参与活跃的电子竞技
- 批准号:
10646057 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Modification and Pilot Testing of The Capacity cOaching And exerCise after Hospitalization for Heart Failure (COACH-HF) Intervention
心力衰竭住院后能力训练和锻炼(COACH-HF)干预措施的修改和试点测试
- 批准号:
10539371 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
-- - 项目类别:
An integrated intervention using a pill ingestible sensor system to trigger actions on multifaceted social and behavioral determinants of health among PLWH
使用药丸摄入传感器系统进行综合干预,以针对艾滋病毒感染者健康的多方面社会和行为决定因素采取行动
- 批准号:
10820048 - 财政年份:2023
- 资助金额:
-- - 项目类别: