Retinal Pigmented Epithelium Reprogramming and Retina Regeneration
视网膜色素上皮重编程和视网膜再生
基本信息
- 批准号:8598851
- 负责人:
- 金额:$ 21.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:Age related macular degenerationAmericanAnimal ModelBackBioinformaticsBlindnessCell DeathCell Differentiation processCell ProliferationCellsChick EmbryoDataDegenerative DisorderDiabetic RetinopathyDiseaseElectroporationEmbryoEpithelialExcisionEyeFibroblast Growth FactorFibroblast Growth Factor 2Figs - dietaryGene Expression ProfileGenesGlaucomaHumanInjuryKnowledgeMammalsMesenchymalMessenger RNAMicroRNAsMolecularMonitorNational Eye InstituteNatural regenerationNeurogliaNeuronsOutcomePhasePigmentsPlasmidsPlayPopulationProcessProliferatingProliferative VitreoretinopathyPublishingQuantitative Reverse Transcriptase PCRRNA-Binding ProteinsRegenerative MedicineReportingRetinaRetinal DegenerationRetinal DetachmentRoleSeriesSignal TransductionSomatic CellStagingStructure of retinal pigment epitheliumTechnologyTherapeuticVisual FieldsVisual impairmentWorkZebrafishbasec-myc Genescell typeeffective therapygain of functiongenome-wideinjuredinnovationknock-downloss of functionneuroepitheliumnext generationnext generation sequencingpluripotencypublic health relevanceregenerativerepairedresearch studyresponseretinal neuronsmall moleculetissue regenerationtranscriptome sequencingtransdifferentiation
项目摘要
Project Summary
Retinal degeneration leading to vision loss is the ultimate outcome of age related macular degeneration
(AMD), diabetic retinopathy and glaucoma. Current therapies offer few options to those suffering from
late stages of these diseases. In order to explore possible therapies, it is important to use animal
models with regenerative capabilities such as the chick embryo. Embryonic chicks regenerate their
retina, following retinectomy, via the process of trans-differentiation if exposed to ectopic fibroblast
growth factor 2 (FGF2). This process involves the reprogramming of the retinal pigmented epithelium
(RPE) to dedifferentiate, losing its pigment, proliferating and forming a neuroepithelium that eventually
differentiates to form all major retina cell types. For this proposal, the emphasis will be on the process
of dedifferentiation which is key to understanding how transdifferentiation works. Our preliminary data
point to a two-step dedifferentiation process where injury (retinectomy) induces the RPE to become
competent to respond to FGF2. We have identified a series of factors that are up-regulated with "injury
only" (step 1) including some pluripotency inducing factors (PiFs) and eye field transcriptional factors. In
addition, we have found that Lin-28, a PiF and a critical player in Muller glia transdifferentiation in
zebrafish, is only up-regulated upon addition of FGF2 (step 2) in the chick eye after retina removal.
Based on our preliminary data, we will investigate whether Lin-28 is required and sufficient to induce
RPE transdifferentiation in retinectomized chick eyes. We will perform gain-of-function experiments by
electroporating a plasmid containing Lin-28 and loss-of-function using morpholinos against Lin28. Our
hypothesis is that Lin-28 is sufficient to complete the RPE reprogramming process initiated by
injury signals to make new retina. The other focus of this proposal is on dissecting regulatory
components including signaling networks and mRNA-miRNA regulatory modules using an unbiased,
genome wide approach and taking advantage of state of the art technology such as Next Generation
Sequencing to perform mRNA-Seq and miRNA-Seq. We hypothesize that the two-step process
implicated in chick RPE dedifferentiation requires a unique set of regulatory molecules at each
step. This study will have a significant impact on the field of regenerative medicine since the
information obtained can be extrapolated to the process of retina repair in mammals including humans,
and specifically on the potential reprogramming of human RPE to generate new neurons. Also the
significance of identifying key miRNA molecules that could reprogram RPE is high considering
these are small molecules highly desirable for human therapeutics.
项目摘要
导致视力丧失的视网膜变性是与年龄相关的黄斑变性的最终结果
(AMD),糖尿病性视网膜病和青光眼。当前疗法几乎没有选择的人
这些疾病的晚期。为了探索可能的疗法,使用动物很重要
具有再生能力的模型,例如雏鸡胚胎。胚胎小鸡再生
视网膜切除术后视网膜通过反差异的过程,如果暴露于异位成纤维细胞
生长因子2(FGF2)。此过程涉及视网膜色素上皮的重编程
(RPE)去分化,失去色素,增殖和形成神经上皮,最终
区分以形成所有主要的视网膜细胞类型。对于此提议,重点将放在这一过程上
去分化,这是理解转变方式的关键。我们的初步数据
指向两步的去分化过程,其中损伤(视网膜切除术)诱导RPE成为
有能力回应FGF2。我们已经确定了一系列因“伤害的上调的因素
仅“(步骤1)包括一些多能诱导因子(PIF)和眼场转录因子。
此外,我们发现Lin-28,PIF和Muller Glia转变的关键参与者
斑马鱼仅在视网膜去除后在鸡眼中添加FGF2(步骤2)后才被上调。
根据我们的初步数据,我们将研究是否需要LIN-28并且足以诱导
视网膜鸡眼中的RPE转分化。我们将通过
使用吗啡对LIN28的电饰含有LIN-28和功能丧失的质粒。我们的
假设是LIN-28足以完成由RPE重新编程过程
伤害信号使新的视网膜。该提案的另一个重点是剖析监管
使用公正的组件,包括信号网络和mRNA-miRNA调节模块
基因组广泛的方法并利用了下一代技术的现状
测序以执行mRNA-SEQ和miRNA-SEQ。我们假设两个步骤的过程
与雏鸡rpe脱分化有关,需要每种唯一的调节分子
步。这项研究将对再生医学领域产生重大影响,因为
获得的信息可以推断到包括人类在内的哺乳动物的视网膜修复过程,
特别是关于人RPE的潜在重编程以产生新的神经元。也是
考虑到可以重新编程的rpe的关键miRNA分子的意义很高。
这些是对人类疗法非常需要的小分子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katia Del Rio-Tsonis其他文献
Katia Del Rio-Tsonis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katia Del Rio-Tsonis', 18)}}的其他基金
Inflammation is a driver of newt lens regeneration
炎症是蝾螈晶状体再生的驱动因素
- 批准号:
10705582 - 财政年份:2022
- 资助金额:
$ 21.3万 - 项目类别:
Inflammation is a driver of newt lens regeneration
炎症是蝾螈晶状体再生的驱动因素
- 批准号:
10433462 - 财政年份:2022
- 资助金额:
$ 21.3万 - 项目类别:
In vivo imaging of newt lens regeneration: Novel molecular, cellular and functional insights
蝾螈晶状体再生的体内成像:新颖的分子、细胞和功能见解
- 批准号:
10250409 - 财政年份:2020
- 资助金额:
$ 21.3万 - 项目类别:
In vivo imaging of newt lens regeneration: Novel molecular, cellular and functional insights
蝾螈晶状体再生的体内成像:新颖的分子、细胞和功能见解
- 批准号:
10043483 - 财政年份:2020
- 资助金额:
$ 21.3万 - 项目类别:
The role of Injury signals in RPE Reprogramming
损伤信号在 RPE 重编程中的作用
- 批准号:
9902450 - 财政年份:2016
- 资助金额:
$ 21.3万 - 项目类别:
The role of Injury signals in RPE Reprogramming
损伤信号在 RPE 重编程中的作用
- 批准号:
9129196 - 财政年份:2016
- 资助金额:
$ 21.3万 - 项目类别:
The role of Injury signals in RPE Reprogramming
损伤信号在 RPE 重编程中的作用
- 批准号:
9246537 - 财政年份:2016
- 资助金额:
$ 21.3万 - 项目类别:
Retinal Pigmented Epithelium Reprogramming and Retina Regeneration
视网膜色素上皮重编程和视网膜再生
- 批准号:
8712501 - 财政年份:2013
- 资助金额:
$ 21.3万 - 项目类别:
相似海外基金
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 21.3万 - 项目类别:
Development and Validation of Photothermal Optical Coherence Tomography for Retinal Imaging
用于视网膜成像的光热光学相干断层扫描的开发和验证
- 批准号:
10550200 - 财政年份:2022
- 资助金额:
$ 21.3万 - 项目类别:
Developing multi-specific aptamers for safe, potent, and long-lasting treatment of geographic atrophy
开发多特异性适体以安全、有效且持久地治疗地理萎缩
- 批准号:
10482569 - 财政年份:2022
- 资助金额:
$ 21.3万 - 项目类别:
Development and Validation of Photothermal Optical Coherence Tomography for Retinal Imaging
用于视网膜成像的光热光学相干断层扫描的开发和验证
- 批准号:
10380391 - 财政年份:2022
- 资助金额:
$ 21.3万 - 项目类别:
Developing an ultrafast fluorescence lifetime imaging ophthalmoscopy system for retinal imaging
开发用于视网膜成像的超快荧光寿命成像检眼镜系统
- 批准号:
10288094 - 财政年份:2021
- 资助金额:
$ 21.3万 - 项目类别: