Retinal Pigmented Epithelium Reprogramming and Retina Regeneration
视网膜色素上皮重编程和视网膜再生
基本信息
- 批准号:8598851
- 负责人:
- 金额:$ 21.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:Age related macular degenerationAmericanAnimal ModelBackBioinformaticsBlindnessCell DeathCell Differentiation processCell ProliferationCellsChick EmbryoDataDegenerative DisorderDiabetic RetinopathyDiseaseElectroporationEmbryoEpithelialExcisionEyeFibroblast Growth FactorFibroblast Growth Factor 2Figs - dietaryGene Expression ProfileGenesGlaucomaHumanInjuryKnowledgeMammalsMesenchymalMessenger RNAMicroRNAsMolecularMonitorNational Eye InstituteNatural regenerationNeurogliaNeuronsOutcomePhasePigmentsPlasmidsPlayPopulationProcessProliferatingProliferative VitreoretinopathyPublishingQuantitative Reverse Transcriptase PCRRNA-Binding ProteinsRegenerative MedicineReportingRetinaRetinal DegenerationRetinal DetachmentRoleSeriesSignal TransductionSomatic CellStagingStructure of retinal pigment epitheliumTechnologyTherapeuticVisual FieldsVisual impairmentWorkZebrafishbasec-myc Genescell typeeffective therapygain of functiongenome-wideinjuredinnovationknock-downloss of functionneuroepitheliumnext generationnext generation sequencingpluripotencypublic health relevanceregenerativerepairedresearch studyresponseretinal neuronsmall moleculetissue regenerationtranscriptome sequencingtransdifferentiation
项目摘要
Project Summary
Retinal degeneration leading to vision loss is the ultimate outcome of age related macular degeneration
(AMD), diabetic retinopathy and glaucoma. Current therapies offer few options to those suffering from
late stages of these diseases. In order to explore possible therapies, it is important to use animal
models with regenerative capabilities such as the chick embryo. Embryonic chicks regenerate their
retina, following retinectomy, via the process of trans-differentiation if exposed to ectopic fibroblast
growth factor 2 (FGF2). This process involves the reprogramming of the retinal pigmented epithelium
(RPE) to dedifferentiate, losing its pigment, proliferating and forming a neuroepithelium that eventually
differentiates to form all major retina cell types. For this proposal, the emphasis will be on the process
of dedifferentiation which is key to understanding how transdifferentiation works. Our preliminary data
point to a two-step dedifferentiation process where injury (retinectomy) induces the RPE to become
competent to respond to FGF2. We have identified a series of factors that are up-regulated with "injury
only" (step 1) including some pluripotency inducing factors (PiFs) and eye field transcriptional factors. In
addition, we have found that Lin-28, a PiF and a critical player in Muller glia transdifferentiation in
zebrafish, is only up-regulated upon addition of FGF2 (step 2) in the chick eye after retina removal.
Based on our preliminary data, we will investigate whether Lin-28 is required and sufficient to induce
RPE transdifferentiation in retinectomized chick eyes. We will perform gain-of-function experiments by
electroporating a plasmid containing Lin-28 and loss-of-function using morpholinos against Lin28. Our
hypothesis is that Lin-28 is sufficient to complete the RPE reprogramming process initiated by
injury signals to make new retina. The other focus of this proposal is on dissecting regulatory
components including signaling networks and mRNA-miRNA regulatory modules using an unbiased,
genome wide approach and taking advantage of state of the art technology such as Next Generation
Sequencing to perform mRNA-Seq and miRNA-Seq. We hypothesize that the two-step process
implicated in chick RPE dedifferentiation requires a unique set of regulatory molecules at each
step. This study will have a significant impact on the field of regenerative medicine since the
information obtained can be extrapolated to the process of retina repair in mammals including humans,
and specifically on the potential reprogramming of human RPE to generate new neurons. Also the
significance of identifying key miRNA molecules that could reprogram RPE is high considering
these are small molecules highly desirable for human therapeutics.
项目概要
导致视力丧失的视网膜变性是年龄相关性黄斑变性的最终结果
(AMD)、糖尿病性视网膜病变和青光眼。目前的疗法为患有此病的患者提供的选择很少
这些疾病的晚期阶段。为了探索可能的疗法,重要的是使用动物
具有再生能力的模型,例如鸡胚胎。胚胎雏鸡再生
视网膜,视网膜切除术后,如果暴露于异位成纤维细胞,则通过转分化过程
生长因子 2 (FGF2)。这个过程涉及视网膜色素上皮的重新编程
(RPE)去分化,失去色素,增殖并形成神经上皮,最终
分化形成所有主要的视网膜细胞类型。对于该提案,重点将放在流程上
去分化的过程是理解转分化如何发挥作用的关键。我们的初步数据
指出了一个两步去分化过程,其中损伤(视网膜切除术)导致 RPE 变成
能够对 FGF2 做出反应。我们已经确定了一系列因“伤害”而上调的因素
仅”(步骤 1),包括一些多能性诱导因子 (PiF) 和眼场转录因子。
此外,我们发现Lin-28是PiF,也是Muller胶质细胞转分化的关键参与者。
在斑马鱼中,仅在去除视网膜后在鸡眼中添加 FGF2(步骤 2)后才会上调。
根据我们的初步数据,我们将调查 Lin-28 是否是必需的并且足以诱导
视网膜切除鸡眼中的 RPE 转分化。我们将通过以下方式进行功能获得实验
电穿孔含有 Lin-28 的质粒,并使用吗啡啉针对 Lin28 使其功能丧失。我们的
假设 Lin-28 足以完成由
损伤信号会产生新的视网膜。该提案的另一个重点是剖析监管
组件,包括信号网络和 mRNA-miRNA 调节模块,使用无偏见的、
全基因组方法并利用最先进的技术,例如下一代
测序以执行 mRNA-Seq 和 miRNA-Seq。我们假设两步过程
参与雏鸡 RPE 去分化的每个细胞都需要一组独特的调节分子
步。这项研究将对再生医学领域产生重大影响
获得的信息可以推断到包括人类在内的哺乳动物的视网膜修复过程,
特别是对人类 RPE 进行重新编程以产生新神经元的潜力。还有
考虑到识别可以重编程 RPE 的关键 miRNA 分子的重要性很高
这些是人类治疗非常需要的小分子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katia Del Rio-Tsonis其他文献
Katia Del Rio-Tsonis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katia Del Rio-Tsonis', 18)}}的其他基金
Inflammation is a driver of newt lens regeneration
炎症是蝾螈晶状体再生的驱动因素
- 批准号:
10705582 - 财政年份:2022
- 资助金额:
$ 21.3万 - 项目类别:
Inflammation is a driver of newt lens regeneration
炎症是蝾螈晶状体再生的驱动因素
- 批准号:
10433462 - 财政年份:2022
- 资助金额:
$ 21.3万 - 项目类别:
In vivo imaging of newt lens regeneration: Novel molecular, cellular and functional insights
蝾螈晶状体再生的体内成像:新颖的分子、细胞和功能见解
- 批准号:
10250409 - 财政年份:2020
- 资助金额:
$ 21.3万 - 项目类别:
In vivo imaging of newt lens regeneration: Novel molecular, cellular and functional insights
蝾螈晶状体再生的体内成像:新颖的分子、细胞和功能见解
- 批准号:
10043483 - 财政年份:2020
- 资助金额:
$ 21.3万 - 项目类别:
The role of Injury signals in RPE Reprogramming
损伤信号在 RPE 重编程中的作用
- 批准号:
9902450 - 财政年份:2016
- 资助金额:
$ 21.3万 - 项目类别:
The role of Injury signals in RPE Reprogramming
损伤信号在 RPE 重编程中的作用
- 批准号:
9129196 - 财政年份:2016
- 资助金额:
$ 21.3万 - 项目类别:
The role of Injury signals in RPE Reprogramming
损伤信号在 RPE 重编程中的作用
- 批准号:
9246537 - 财政年份:2016
- 资助金额:
$ 21.3万 - 项目类别:
Retinal Pigmented Epithelium Reprogramming and Retina Regeneration
视网膜色素上皮重编程和视网膜再生
- 批准号:
8712501 - 财政年份:2013
- 资助金额:
$ 21.3万 - 项目类别:
相似海外基金
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 21.3万 - 项目类别:
Development and Validation of Photothermal Optical Coherence Tomography for Retinal Imaging
用于视网膜成像的光热光学相干断层扫描的开发和验证
- 批准号:
10550200 - 财政年份:2022
- 资助金额:
$ 21.3万 - 项目类别:
Developing multi-specific aptamers for safe, potent, and long-lasting treatment of geographic atrophy
开发多特异性适体以安全、有效且持久地治疗地理萎缩
- 批准号:
10482569 - 财政年份:2022
- 资助金额:
$ 21.3万 - 项目类别:
Development and Validation of Photothermal Optical Coherence Tomography for Retinal Imaging
用于视网膜成像的光热光学相干断层扫描的开发和验证
- 批准号:
10380391 - 财政年份:2022
- 资助金额:
$ 21.3万 - 项目类别:
Developing an ultrafast fluorescence lifetime imaging ophthalmoscopy system for retinal imaging
开发用于视网膜成像的超快荧光寿命成像检眼镜系统
- 批准号:
10288094 - 财政年份:2021
- 资助金额:
$ 21.3万 - 项目类别: