A Roadmap to Uncover RPE Plasticity
揭示 RPE 可塑性的路线图
基本信息
- 批准号:10639436
- 负责人:
- 金额:$ 36.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAcuteAddressAtlasesBehaviorBindingBinding SitesBiological AssayCRISPR/Cas technologyCell Differentiation processCell NucleusCellsChick EmbryoChicken CellsChickensChromatinChromosome MappingCompetenceDNADNA BindingDNA MethylationDNA Modification ProcessDNA mappingData AnalysesData SetDevelopmentEmbryoEpigenetic ProcessEventEyeFGF2 geneFoundationsGene Expression RegulationGenesGenetic TranscriptionGenome MappingsGoalsIntentionMapsMethodologyMethodsMolecularMolecular ProbesNatural regenerationNerve RegenerationNeural RetinaPatternPhenotypePublic HealthRegulator GenesReplacement TherapyRepressionResolutionRetinaRetinal DegenerationRoleSeriesSourceStructure of retinal pigment epitheliumTimeVisionadult neurogenesisblastomere structurecell typeembryo cellepithelial stem cellgenome-widegenome-wide analysishistone modificationinnovationinsightloss of functionmultimodal datamultimodalityneuralneuronal replacementnovelpermissivenessprogramsregeneration potentialresponserestorationretinal neuronretinal regenerationsingle nucleus RNA-sequencingtranscription factortranscriptometranscriptome sequencingtranscriptomics
项目摘要
Abstract
Degenerative retinal diseases represent an enormous public health burden and demand innovative strategies to
replace retinal neurons. Ideal solutions will overcome innate barriers associated with terminal differentiation to
endogenously regenerate retinal neurons. Retinal pigment epithelium (RPE) cells hold promise for this
application, as these cells can reprogram to produce neural retina in embryonic amniotes. For reasons that are
not well understood, RPE cells lose neural competence during early amniotic development. The present study
proposes to comprehensively map the gene regulatory landscape of RPE at plastic stages of development and
to probe the molecular barriers to reprogramming that emerge as these cells differentiate. RPE cells of the
chicken are plastic at embryonic day 4 (E4) and can be reprogrammed to neural retina following retinectomy and
treatment with FGF2. However, by embryonic day 5 (E5), RPE cell fate becomes restricted and reprogramming
capacity is abrogated. Previous studies have demonstrated that E4 RPE cells reprogram through the activation
of neural retina transcription factors, such as VSX2, SIX6, and PAX6, and the simultaneous repression of RPE
differentiation programs. Concomitantly, an epigenetic reprogramming event resets DNA methylation and poises
chromatin into a more active configuration to facilitate the ensuing change in cell identity. However, it is not
understood how transcription factor networks interact with a dynamic chromatin landscape to determine RPE
neural competence. Our preliminary evidence suggests that pro-neural genes remain comparably inducible in
the E5 RPE, but that an incipient RPE differentiation program serves as an inherent barrier to neural identity at
this stage. This differentiation program is led by the RPE transcription factors MITF and OTX2, and distinct
accessibility footprints from these factors are observable in the chromatin landscape. The current proposal will
build on these findings by mapping genome-wide epigenetic patterns associated with RPE competence
restriction, including DNA and histone modifications that have been previously demonstrated to facilitate RPE
reprogramming (Aim 1). Additionally, RPE differentiation and reprogramming will be profiled at a single cell
resolution, enabling the precise identification of transcriptomic features that delineate plastic and fate restricted
RPE (Aim 2). In parallel, the DNA binding activity of key effector transcription factors, such as MITF and OTX2,
will be profiled across the RPE at different stages of differentiation or reprogramming. These factors, as well as
key transcriptional targets, will be perturbed using CRISPR-Cas9 with the intention of recovering RPE neural
competence at more advanced stages of differentiation (Aim 3). Together, these findings will provide an
expansive view of chromatin states associated with RPE competence restriction, while simultaneously probing
the chromatin – transcription factor interactions that drive the observed phenotypes. These results will provide
imperative insights toward understanding RPE differentiation and the potentiality of this cell type for use in neuron
replacement strategies.
抽象的
退行性视网膜疾病是巨大的公共卫生负担,需要创新策略
理想的解决方案将克服与终末分化相关的先天障碍。
视网膜色素上皮(RPE)细胞的内源性再生有望实现这一目标。
应用,因为这些细胞可以重新编程以在胚胎羊膜动物中产生神经视网膜。
目前尚不清楚,RPE 细胞在早期羊膜发育过程中失去了神经能力。
提出全面绘制 RPE 在塑料发育阶段的基因调控图谱
探究 RPE 细胞分化时出现的重编程分子障碍。
鸡在胚胎第 4 天 (E4) 时具有可塑性,并且可以在视网膜切除术后重新编程为神经视网膜
然而,到胚胎第 5 天 (E5),RPE 细胞命运受到限制并重新编程。
先前的研究表明,E4 RPE 细胞通过激活进行重新编程。
神经视网膜转录因子,如 VSX2、SIX6 和 PAX6,以及同时抑制 RPE
与此同时,表观遗传重编程事件重置了 DNA 甲基化和平衡。
染色质变成更活跃的构型,以促进随后的细胞身份变化,但事实并非如此。
了解转录因子网络如何与动态染色质景观相互作用以确定 RPE
我们的初步证据表明,亲神经基因在神经能力中仍然具有相对可诱导性。
E5 RPE,但早期的 RPE 分化程序是神经身份的固有障碍
这个阶段的分化程序是由 RPE 转录因子 MITF 和 OTX2 主导的,并且是不同的。
当前的提案将在染色质景观中观察到这些因素的可及性足迹。
基于这些发现,绘制与 RPE 能力相关的全基因组表观遗传模式
限制,包括先前已被证明可促进 RPE 的 DNA 和组蛋白修饰
此外,RPE 分化和重编程将在单细胞中进行分析。
分辨率,能够精确识别描述塑料和命运限制的转录组特征
RPE(目标 2)同时,关键效应转录因子(如 MITF 和 OTX2)的 DNA 结合活性,
将在分化或重编程的不同阶段对 RPE 进行分析,以及这些因素。
关键转录目标,将使用 CRISPR-Cas9 进行干扰,目的是恢复 RPE 神经
这些发现将共同提供更高级分化阶段的能力(目标 3)。
与 RPE 能力限制相关的染色质状态的广阔视野,同时探测
这些结果将提供驱动观察到的表型的染色质-转录因子相互作用。
了解 RPE 分化和这种细胞类型在神经元中使用的潜力的必要见解
替代策略。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katia Del Rio-Tsonis其他文献
Katia Del Rio-Tsonis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katia Del Rio-Tsonis', 18)}}的其他基金
Inflammation is a driver of newt lens regeneration
炎症是蝾螈晶状体再生的驱动因素
- 批准号:
10705582 - 财政年份:2022
- 资助金额:
$ 36.13万 - 项目类别:
Inflammation is a driver of newt lens regeneration
炎症是蝾螈晶状体再生的驱动因素
- 批准号:
10433462 - 财政年份:2022
- 资助金额:
$ 36.13万 - 项目类别:
In vivo imaging of newt lens regeneration: Novel molecular, cellular and functional insights
蝾螈晶状体再生的体内成像:新颖的分子、细胞和功能见解
- 批准号:
10250409 - 财政年份:2020
- 资助金额:
$ 36.13万 - 项目类别:
In vivo imaging of newt lens regeneration: Novel molecular, cellular and functional insights
蝾螈晶状体再生的体内成像:新颖的分子、细胞和功能见解
- 批准号:
10043483 - 财政年份:2020
- 资助金额:
$ 36.13万 - 项目类别:
The role of Injury signals in RPE Reprogramming
损伤信号在 RPE 重编程中的作用
- 批准号:
9902450 - 财政年份:2016
- 资助金额:
$ 36.13万 - 项目类别:
The role of Injury signals in RPE Reprogramming
损伤信号在 RPE 重编程中的作用
- 批准号:
9129196 - 财政年份:2016
- 资助金额:
$ 36.13万 - 项目类别:
The role of Injury signals in RPE Reprogramming
损伤信号在 RPE 重编程中的作用
- 批准号:
9246537 - 财政年份:2016
- 资助金额:
$ 36.13万 - 项目类别:
Retinal Pigmented Epithelium Reprogramming and Retina Regeneration
视网膜色素上皮重编程和视网膜再生
- 批准号:
8598851 - 财政年份:2013
- 资助金额:
$ 36.13万 - 项目类别:
Retinal Pigmented Epithelium Reprogramming and Retina Regeneration
视网膜色素上皮重编程和视网膜再生
- 批准号:
8712501 - 财政年份:2013
- 资助金额:
$ 36.13万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Molecular analysis of glutamatergic neurons derived from iPSCs containing PPM1D truncating mutations found in Jansen de Vries Syndrome
Jansen de Vries 综合征中发现的含有 PPM1D 截短突变的 iPSC 衍生的谷氨酸能神经元的分子分析
- 批准号:
10573782 - 财政年份:2023
- 资助金额:
$ 36.13万 - 项目类别:
Defining the impact of cannabinoids on the HIV reservoir in humanized mice
确定大麻素对人源化小鼠 HIV 储存库的影响
- 批准号:
10814024 - 财政年份:2023
- 资助金额:
$ 36.13万 - 项目类别:
Resolvin receptor signaling in trigeminal sensory neurons
三叉神经感觉神经元中的 Resolvin 受体信号传导
- 批准号:
10738862 - 财政年份:2023
- 资助金额:
$ 36.13万 - 项目类别:
SPORE University of Texas M. D. Anderson Cancer Center-Leukemia
SPORE 德克萨斯大学 MD 安德森癌症中心 - 白血病
- 批准号:
10911713 - 财政年份:2023
- 资助金额:
$ 36.13万 - 项目类别:
Inflammatory Signaling and Regeneration in Zebrafish models of Retinal Degeneration
视网膜变性斑马鱼模型中的炎症信号传导和再生
- 批准号:
10751153 - 财政年份:2023
- 资助金额:
$ 36.13万 - 项目类别: