Glaucoma Assessment Using A Multimodality Image Analysis Approach

使用多模态图像分析方法进行青光眼评估

基本信息

  • 批准号:
    8202660
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-04-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant) This Career Development Award-2 (CDA-2) is for supporting an early-career engineering faculty member for three years. It will provide the means to train a young researcher currently possessing broad image analysis experience and narrowly focused expertise in one ophthalmic imaging modality (optical coherence tomography, OCT) in a multitude of ophthalmic modalities and clinical areas, with a special focus on glaucoma. While the nominee has already demonstrated success as a member of interdisciplinary teams with VA clinicians and is an investigator associated with the Iowa City VA Center of Excellence for the Prevention and Treatment of Visual Loss, this CDA is specifically designed to enhance her ophthalmic clinical knowledge to enable her to develop into an ophthalmic image analysis expert with an unprecedented level of clinical understanding for an engineering-trained scholar and with the ability to contribute substantially to interdisciplinary translational and clinically oriented ophthalmic research of interest to veterans. Because of the current variability associated with standard functional measurements for the diagnosis and assessment of glaucoma, the research plan is designed to work towards obtaining better structural parameters to enable (1) improved diagnostic capabilities, (2) an objective basis for disease staging, and (3) an improved ability to measure disease progression. More specifically, with the overall hypothesis that the multimodal combination of information from stereo fundus photography and spectral-domain OCT (SD-OCT) will enable the discovery of less variable (across normal subjects) and more reproducible structural parameters relevant to the diagnosis, management, or understanding of glaucoma, the plan addresses the following specific aims: 7 Aim 1: Develop the novel multimodal methodology for obtaining less variable layer-thickness and more reproducible optic-nerve-head structural parameters for the assessment of glaucoma. - Aim 1a: Develop the methodology for simultaneously segmenting the blood vessels in fundus photographs and SD-OCT volumes. Refine the methodology for correcting the retinal nerve fiber layer thickness/volume and ganglion cell layer thickness/volume in SD-OCT volumes based on the presence of blood vessels derived from SD-OCT and/or fundus photography. Verify that such a correction results in a lower variability in regional thickness measurements across normal subjects. - Aim 1b: Develop the methodology for simultaneously segmenting the optic disc, neural canal opening, and cup in SD-OCT images and stereo fundus photographs. Compute the reproducibility of such measurements in normal eyes and in eyes with glaucoma. 7 Aim 2: Characterize the relationship between the inner layers of the retina and the outer layers of the retina in normal eyes and in eyes varying in refractive error, axial eye length, and age. Determine whether this relationship will enable reduced variability of inner retinal thickness measurements across normal subjects and better correlation of thickness parameters with disease status in glaucoma subjects. 7 Aim 3: Relate the thickness/volume of the inner retinal layer containing ganglion cells (corrected and uncorrected based on the presence of vessels) to a) the retinal nerve fiber layer thickness (corrected and uncorrected based on the presence of vessels) and b) the cross-sectional area of the rim tissue at the plane of the neural canal opening in normal and glaucoma subjects. In addition to its direct relevance to glaucoma, the image analysis methodology developed as part of the research plan will be relevant to telemedical applications and other ophthalmic (and systemic) diseases. This will thus enable further benefit for the veteran population and will set the stage for future research in these areas by the nominee.
描述(由申请人提供) 该职业发展奖2(CDA-2)是为了支持早期的工程教师三年。 它将提供培训目前拥有广泛图像分析经验的年轻研究人员,并以多种眼科模式和临床领域的一种眼科成像方式(Optical Cooherence polography,Oct Oct层析成像,Optical Cooherence层析成像,OCT)进行狭窄的专业知识,并特别关注glaucoma。 While the nominee has already demonstrated success as a member of interdisciplinary teams with VA clinicians and is an investigator associated with the Iowa City VA Center of Excellence for the Prevention and Treatment of Visual Loss, this CDA is specifically designed to enhance her ophthalmic clinical knowledge to enable her to develop into an ophthalmic image analysis expert with an unprecedented level of clinical understanding for an engineering-trained scholar and with the ability to对退伍军人感兴趣的跨学科翻译和临床方面的眼科研究做出了重大贡献。 由于与标准功能测量有关青光眼的诊断和评估相关的当前可变性,研究计划旨在致力于获得更好的结构参数以实现(1)改善诊断能力,(2)疾病分期的客观基础,(3)改善了测量疾病进展的能力。 More specifically, with the overall hypothesis that the multimodal combination of information from stereo fundus photography and spectral-domain OCT (SD-OCT) will enable the discovery of less variable (across normal subjects) and more reproducible structural parameters relevant to the diagnosis, management, or understanding of glaucoma, the plan addresses the following specific aims: 7 Aim 1: Develop the novel multimodal methodology for obtaining less variable层厚度和更可重现的光学主角结构参数,用于评估青光眼。 - AIM 1A:开发用于同时在眼底照片和SD-OCT体积中分割血管的方法。 完善基于SD-OCT和/或底面摄影的血管的存在,改善了校正视网膜神经纤维层的厚度/体积/体积和神经节细胞层厚度/体积的SD-OCT体积。 验证这种校正是否会导致正常受试者的区域厚度测量的变异性较低。 - AIM 1B:开发用于在SD-OCT图像和立体声底面照片中同时分割视盘,神经管开口和杯子的方法。 计算正常眼中和青光眼眼睛中这种测量的可重复性。 7 AIM 2:表征视网膜的内部层与视网膜的外层在正常眼中,眼睛在折射误差,轴向眼长和年龄之间变化。 确定这种关系是否能够降低正常受试者内部视网膜厚度测量的变异性,以及在青光眼受试者中厚度参数与疾病状态的更好相关性。 7目标3:将包含神经节细胞的内部视网膜层的厚度/体积(根据血管的存在进行了校正和未纠正)与a)a)视网膜神经纤维层厚度(基于血管的存在校正和未纠正),b)在正常和glaucama和glaucama的Neural Canal开放的沿缘组织平面的横截面面积。 除了与青光眼的直接相关性外,作为研究计划的一部分开发的图像分析方法将与远程医疗应用和其他眼科(和全身性)疾病有关。因此,这将为退伍军人人口带来进一步的收益,并将为这些领域的未来研究奠定阶段。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MONA K. GARVIN其他文献

MONA K. GARVIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MONA K. GARVIN', 18)}}的其他基金

Early Detection of Progressive Visual Loss in Glaucoma Using Deep Learning
使用深度学习早期检测青光眼进行性视力丧失
  • 批准号:
    10424899
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Early Detection of Progressive Visual Loss in Glaucoma Using Deep Learning
使用深度学习早期检测青光眼进行性视力丧失
  • 批准号:
    10623178
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
IEEE International Symposium on Biomedical Imaging (ISBI) 2020
IEEE 国际生物医学成像研讨会 (ISBI) 2020
  • 批准号:
    9914410
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Automated Assessment of Optic Nerve Edema with Low-Cost Imaging
通过低成本成像自动评估视神经水肿
  • 批准号:
    9569310
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
3D Image Analysis Approach to Determine Severity and Cause of Optic Nerve Edema
3D 图像分析方法确定视神经水肿的严重程度和原因
  • 批准号:
    8477880
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
3D Image Analysis Approach to Determine Severity and Cause of Optic Nerve Edema
3D 图像分析方法确定视神经水肿的严重程度和原因
  • 批准号:
    8842639
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
3D Image Analysis Approach to Determine Severity and Cause of Optic Nerve Edema
3D 图像分析方法确定视神经水肿的严重程度和原因
  • 批准号:
    8652462
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
Glaucoma Assessment Using A Multimodality Image Analysis Approach
使用多模态图像分析方法进行青光眼评估
  • 批准号:
    8425995
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
Glaucoma Assessment Using A Multimodality Image Analysis Approach
使用多模态图像分析方法进行青光眼评估
  • 批准号:
    8838199
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
  • 批准号:
    62372118
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
  • 批准号:
    82300679
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
  • 批准号:
    82301784
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
  • 批准号:
    82301217
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
  • 批准号:
    82373667
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
  • 批准号:
    10751106
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
PREVENT - Practice-based Approaches to Promote HPV Vaccination
预防 - 基于实践的方法促进 HPV 疫苗接种
  • 批准号:
    10638515
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
  • 批准号:
    10642607
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了