Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
基本信息
- 批准号:8403011
- 负责人:
- 金额:$ 23.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-01-15 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAbnormal CellActinsActomyosinApicalArchitectureAutomobile DrivingBiochemicalBiochemistryBiologyCell ShapeCellsCellular biologyComplexCytoskeletal ModelingCytoskeletonDataDevelopmentDevelopmental Cell BiologyDrosophila genusEducationEnvironmentEpithelialEpithelial CellsEpitheliumFoundationsFutureGene ExpressionGenerationsGenesGeneticGoalsHomologous GeneHumanImage AnalysisIndividualLasersLearningLifeMalignant NeoplasmsMeasuresMechanicsMentorsMesoderm CellMicrofilamentsModelingMolecularMorphogenesisMotor ActivityMyosin Type IINeoplasm MetastasisOrganPharmaceutical PreparationsPhasePhotobleachingPhysicsPhysiologic pulsePlayPostdoctoral FellowProcessPropertyProteinsRNA InterferenceRegulationResearchResourcesRetinal ConeRoleRunningShapesSignal TransductionSnailsStretchingSystemTechnical ExpertiseTestingTimeTissuesTrainingTranslatingUniversitiesVariantWorkabstractingcancer cellcell behaviorcell growthcellular imagingconstrictiondriving forceexperiencegastrulationgraduate studentimprovedinsightinterdisciplinary approachmathematical modelmultidisciplinaryneoplastic cellnew therapeutic targetphotoactivationpreventprospectiveprotein functionresearch studyskillstranscription factortumor progression
项目摘要
6. Project Summary/Abstract
Morphogenesis is the process whereby simple tissues, such as epithelial sheets, are sculpted into
complex organs. Morphogenesis is driven by forces generated by individual cells, which result in changes
in cell shape and tissue mechanics. During development, these changes are tightly regulated in space and
time by both genetic and mechanical signals. During cancer, these signals are often improperly activated,
resulting in abnormal cell behavior that leads to tumor cell growth and metastasis. Therefore,
understanding how cells and tissues generate forces is essential to understand development and cancer.
Because morphogenesis depends on the complex interplay of molecular and mechanical signals,
identifying the mechanisms that drive morphogenesis requires a multidisciplinary approach that includes
biochemistry, genetics, cell and developmental biology, physics, and mathematical modeling. As a
graduate student in David Drubin's lab at UC Berkeley, I was trained in cell biology, biochemistry, and
genetics. Specifically, I gained much experience working with the actin cytoskeleton, which generates
mechanical forces in cells. As a postdoctoral fellow in Eric Wieschaus' lab at Princeton University, I have
learned Drosophila biology and have begun to develop quantitative and computational skills to analyze the
dynamics of multicellular systems. Specifically, I have analyzed apical constriction, a common cell shape
change that facilitates epithelial bending and tissue invagination. These complementary research
experiences provide me with a unique perspective and a range of technical expertise that I will use in my
independent lab to study how the actin cytoskeleton generates forces during development.
In the Wieschaus lab, I discovered that apical constriction is driven by pulsed actomyosin
contractions, which incrementally constrict the cell. Pulsed contractions are regulated by the transcription
factors Twist and Snail, whose human homologues play important roles in cancer cell metastasis. In the
current research plan, I propose experiments that will elucidate the mechanisms that regulate pulsed
contraction. This will be achieved by integrating live-cell imaging, quantitative image analysis, genetics,
biochemistry, and mathematical modeling. One goal will be to identify the molecular mechanisms that
control pulsed contractions downstream of the transcription factors Twist and Snail. A second goal will be
to determine how mechanical forces transmitted through the tissue regulate cell shape change and
cytoskeletal organization during morphogenesis.
To accomplish the goals of my proposal, I need additional training in quantitative image analysis,
mathematical modeling, and physics. This will allow me to more effectively analyze the dynamics of the
actin cytoskeleton and the physical interactions between cells in multicellular systems, which will be
essential foundations for my future independent lab. The Wieschaus lab is the ideal environment to obtain
this training because we are part of the Center for Quantitative Biology at Princeton University. Eric
Wieschaus is an excellent mentor who strongly believes in quantifying experimental data and developing
quantitative models to explain this data. I also collaborate with a theoretical physicist at Princeton, Matthias
Kaschube, who is an expert on quantitative image analysis. Furthermore, Princeton offers a variety of
seminars, classes, and resources that are at my disposal to further my education in quantitative biology.
The additional training I obtain at Princeton will greatly improve my skills in quantitative analysis and
modeling, and will increase the quality and impact of my future research. Overall, this experience will help
me achieve my goal of running a multidisciplinary lab that performs cutting edge research on
morphogenesis.
6。项目摘要/摘要
形态发生是将简单的组织(例如上皮片)雕刻成的过程
复杂的器官。形态发生是由单个细胞产生的力驱动的,从而导致变化
在细胞形状和组织力学中。在开发过程中,这些变化在太空中受到严格调节,
遗传和机械信号的时间。在癌症期间,这些信号通常被不当激活,
导致异常细胞行为,导致肿瘤细胞生长和转移。所以,
了解细胞和组织如何产生力对于了解发育和癌症至关重要。
由于形态发生取决于分子和机械信号的复杂相互作用,所以
确定驱动形态发生的机制需要一种多学科方法,包括
生物化学,遗传学,细胞和发育生物学,物理学和数学建模。作为
我在加州大学伯克利分校的大卫·德鲁宾(David Droubin)实验室的研究生,我接受了细胞生物学,生物化学和
遗传学。具体而言,我获得了与肌动蛋白细胞骨架一起工作的很多经验,该骨骼生成
细胞中的机械力。作为普林斯顿大学埃里克·威斯库斯(Eric Wieschaus)实验室的博士后研究员,我有
学会了果蝇生物学,并已开始发展定量和计算技能来分析
多细胞系统的动力学。具体而言,我已经分析了顶端收缩,这是一种常见的细胞形状
改变促进上皮弯曲和组织内幕的变化。这些补充研究
经验为我提供了独特的视角和一系列技术专长
独立实验室研究肌动蛋白细胞骨架如何在发育过程中产生力。
在Wieschaus实验室中,我发现顶部收缩是由脉冲肌球蛋白驱动的
收缩,逐渐收缩细胞。脉冲收缩受转录调节
因素扭曲和蜗牛,其人类同源物在癌细胞转移中起重要作用。在
当前的研究计划,我提出了实验,以阐明调节脉冲的机制
收缩。这将通过整合活细胞成像,定量图像分析,遗传学,
生物化学和数学建模。一个目标是确定分子机制
转录因子扭曲和蜗牛的下游控制脉冲收缩。第二个目标是
确定通过组织传输的机械力如何调节细胞形状的变化和
形态发生过程中的细胞骨架组织。
为了实现我的建议的目标,我需要在定量图像分析中进行其他培训,
数学建模和物理。这将使我能够更有效地分析
肌动蛋白细胞骨架和多细胞系统中细胞之间的物理相互作用,这将是
我未来独立实验室的基础。 Wieschaus实验室是获得的理想环境
这项培训是因为我们是普林斯顿大学定量生物学中心的一部分。埃里克
维斯豪斯(Wieschaus)是一位出色的导师,他坚信量化实验数据和开发
定量模型来解释此数据。我还与普林斯顿的一位理论物理学家合作
Kaschube,是定量图像分析的专家。此外,普林斯顿提供了各种各样的
为了进一步发展定量生物学的教育,我可以使用的研讨会,课程和资源。
我在普林斯顿获得的额外培训将大大提高我在定量分析方面的技能和
建模,并会提高我未来研究的质量和影响。总的来说,这种经历将有所帮助
我实现了运行一个多学科实验室的目标,该实验室对
形态发生。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Christopher Martin其他文献
Adam Christopher Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Christopher Martin', 18)}}的其他基金
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
- 批准号:
9260898 - 财政年份:2013
- 资助金额:
$ 23.72万 - 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
- 批准号:
8481857 - 财政年份:2013
- 资助金额:
$ 23.72万 - 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
- 批准号:
8645656 - 财政年份:2013
- 资助金额:
$ 23.72万 - 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
- 批准号:
9061419 - 财政年份:2013
- 资助金额:
$ 23.72万 - 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
- 批准号:
8211679 - 财政年份:2010
- 资助金额:
$ 23.72万 - 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
- 批准号:
8217255 - 财政年份:2010
- 资助金额:
$ 23.72万 - 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
- 批准号:
7770569 - 财政年份:2010
- 资助金额:
$ 23.72万 - 项目类别:
相似国自然基金
PRDX6-PLIN4通路调控星形胶质细胞脂代谢异常在抑郁症发生中的作用研究
- 批准号:82301707
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
莫氏细胞早期异常活化介导的前下托-齿状回环路构建在癫痫发生中的作用研究
- 批准号:82371458
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
METTL1介导m7G甲基化异常修饰在肺动脉高压内皮细胞糖代谢重编程中的作用及机制研究
- 批准号:82370057
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于脂肪酸代谢介导的神经元-星形胶质细胞偶联异常探讨好忘方抗AD作用机制
- 批准号:82305087
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ZNF683+CD8+组织驻留T细胞致食管肠神经干细胞分化异常在贲门失弛缓症发病中的作用和机制探索
- 批准号:82300614
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
- 批准号:
8211679 - 财政年份:2010
- 资助金额:
$ 23.72万 - 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
- 批准号:
8217255 - 财政年份:2010
- 资助金额:
$ 23.72万 - 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
- 批准号:
7770569 - 财政年份:2010
- 资助金额:
$ 23.72万 - 项目类别: