Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
基本信息
- 批准号:8217255
- 负责人:
- 金额:$ 24.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-01-15 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAbnormal CellActinsActomyosinApicalArchitectureAutomobile DrivingBiochemicalBiochemistryBiologyCell ShapeCellsCellular biologyComplexCytoskeletal ModelingCytoskeletonDataDevelopmentDevelopmental Cell BiologyDrosophila genusEducationEnvironmentEpithelialEpithelial CellsEpitheliumFoundationsFutureGene ExpressionGenerationsGenesGeneticGoalsHomologous GeneHumanImage AnalysisIndividualLasersLearningLifeMalignant NeoplasmsMeasuresMechanicsMentorsMesoderm CellMicrofilamentsModelingMolecularMorphogenesisMotor ActivityMyosin Type IINeoplasm MetastasisOrganPharmaceutical PreparationsPhasePhotobleachingPhysicsPhysiologic pulsePlayPostdoctoral FellowProcessPropertyProteinsRNA InterferenceRegulationResearchResourcesRetinal ConeRoleRunningShapesSignal TransductionSnailsStretchingSystemTechnical ExpertiseTestingTimeTissuesTrainingTranslatingUniversitiesVariantWorkabstractingcancer cellcell behaviorcell growthcellular imagingconstrictiondriving forceexperiencegastrulationgraduate studentimprovedinsightinterdisciplinary approachmathematical modelmultidisciplinaryneoplastic cellnew therapeutic targetphotoactivationpreventprospectiveprotein functionresearch studyskillstranscription factortumor progression
项目摘要
6. Project Summary/Abstract
Morphogenesis is the process whereby simple tissues, such as epithelial sheets, are sculpted into
complex organs. Morphogenesis is driven by forces generated by individual cells, which result in changes
in cell shape and tissue mechanics. During development, these changes are tightly regulated in space and
time by both genetic and mechanical signals. During cancer, these signals are often improperly activated,
resulting in abnormal cell behavior that leads to tumor cell growth and metastasis. Therefore,
understanding how cells and tissues generate forces is essential to understand development and cancer.
Because morphogenesis depends on the complex interplay of molecular and mechanical signals,
identifying the mechanisms that drive morphogenesis requires a multidisciplinary approach that includes
biochemistry, genetics, cell and developmental biology, physics, and mathematical modeling. As a
graduate student in David Drubin's lab at UC Berkeley, I was trained in cell biology, biochemistry, and
genetics. Specifically, I gained much experience working with the actin cytoskeleton, which generates
mechanical forces in cells. As a postdoctoral fellow in Eric Wieschaus' lab at Princeton University, I have
learned Drosophila biology and have begun to develop quantitative and computational skills to analyze the
dynamics of multicellular systems. Specifically, I have analyzed apical constriction, a common cell shape
change that facilitates epithelial bending and tissue invagination. These complementary research
experiences provide me with a unique perspective and a range of technical expertise that I will use in my
independent lab to study how the actin cytoskeleton generates forces during development.
In the Wieschaus lab, I discovered that apical constriction is driven by pulsed actomyosin
contractions, which incrementally constrict the cell. Pulsed contractions are regulated by the transcription
factors Twist and Snail, whose human homologues play important roles in cancer cell metastasis. In the
current research plan, I propose experiments that will elucidate the mechanisms that regulate pulsed
contraction. This will be achieved by integrating live-cell imaging, quantitative image analysis, genetics,
biochemistry, and mathematical modeling. One goal will be to identify the molecular mechanisms that
control pulsed contractions downstream of the transcription factors Twist and Snail. A second goal will be
to determine how mechanical forces transmitted through the tissue regulate cell shape change and
cytoskeletal organization during morphogenesis.
To accomplish the goals of my proposal, I need additional training in quantitative image analysis,
mathematical modeling, and physics. This will allow me to more effectively analyze the dynamics of the
actin cytoskeleton and the physical interactions between cells in multicellular systems, which will be
essential foundations for my future independent lab. The Wieschaus lab is the ideal environment to obtain
this training because we are part of the Center for Quantitative Biology at Princeton University. Eric
Wieschaus is an excellent mentor who strongly believes in quantifying experimental data and developing
quantitative models to explain this data. I also collaborate with a theoretical physicist at Princeton, Matthias
Kaschube, who is an expert on quantitative image analysis. Furthermore, Princeton offers a variety of
seminars, classes, and resources that are at my disposal to further my education in quantitative biology.
The additional training I obtain at Princeton will greatly improve my skills in quantitative analysis and
modeling, and will increase the quality and impact of my future research. Overall, this experience will help
me achieve my goal of running a multidisciplinary lab that performs cutting edge research on
morphogenesis.
6. 项目总结/摘要
形态发生是简单组织(例如上皮片)被雕刻成的过程
复杂的器官。形态发生是由单个细胞产生的力驱动的,这会导致变化
细胞形状和组织力学。在开发过程中,这些变化在空间和
时间由遗传信号和机械信号决定。在癌症期间,这些信号常常被不正确地激活,
导致细胞行为异常,导致肿瘤细胞生长和转移。所以,
了解细胞和组织如何产生力对于了解发育和癌症至关重要。
因为形态发生取决于分子和机械信号的复杂相互作用,
确定驱动形态发生的机制需要采用多学科方法,包括
生物化学、遗传学、细胞和发育生物学、物理学和数学建模。作为一个
作为加州大学伯克利分校 David Drubin 实验室的研究生,我接受了细胞生物学、生物化学和
遗传学。具体来说,我在肌动蛋白细胞骨架方面获得了很多经验,它产生
细胞内的机械力。作为普林斯顿大学 Eric Wieschaus 实验室的博士后研究员,我
学习了果蝇生物学,并开始发展定量和计算技能来分析果蝇
多细胞系统动力学。具体来说,我分析了顶端收缩,一种常见的细胞形状
促进上皮弯曲和组织内陷的变化。这些互补的研究
经验为我提供了独特的视角和一系列的技术专业知识,我将在我的工作中使用它们
独立实验室研究肌动蛋白细胞骨架在发育过程中如何产生力。
在 Wieschaus 实验室,我发现心尖收缩是由脉冲肌动球蛋白驱动的
收缩,逐渐收缩细胞。脉冲式收缩由转录调节
Twist 和 Snail 因子,其人类同源物在癌细胞转移中发挥重要作用。在
目前的研究计划,我提出实验来阐明调节脉冲的机制
收缩。这将通过整合活细胞成像、定量图像分析、遗传学、
生物化学和数学建模。一个目标是确定分子机制
控制转录因子 Twist 和 Snail 下游的脉冲收缩。第二个目标将是
确定通过组织传递的机械力如何调节细胞形状变化以及
形态发生过程中的细胞骨架组织。
为了实现我的提案的目标,我需要进行定量图像分析方面的额外培训,
数学建模和物理学。这将使我能够更有效地分析动态
肌动蛋白细胞骨架和多细胞系统中细胞之间的物理相互作用,这将是
为我未来的独立实验室奠定了重要的基础。 Wieschaus 实验室是获得
这次培训是因为我们是普林斯顿大学定量生物学中心的一部分。埃里克
Wieschaus 是一位出色的导师,他坚信量化实验数据并开发
定量模型来解释这些数据。我还与普林斯顿大学的理论物理学家马蒂亚斯合作
Kaschube,定量图像分析专家。此外,普林斯顿还提供各种
我可以利用这些研讨会、课程和资源来继续我的定量生物学教育。
我在普林斯顿获得的额外培训将极大地提高我在定量分析和
建模,并将提高我未来研究的质量和影响。总的来说,这次经历会有所帮助
我实现了运行一个多学科实验室的目标,该实验室进行前沿研究
形态发生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Christopher Martin其他文献
Adam Christopher Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Christopher Martin', 18)}}的其他基金
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
- 批准号:
9260898 - 财政年份:2013
- 资助金额:
$ 24.75万 - 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
- 批准号:
8481857 - 财政年份:2013
- 资助金额:
$ 24.75万 - 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
- 批准号:
8645656 - 财政年份:2013
- 资助金额:
$ 24.75万 - 项目类别:
Investigating the generation of mechanical forces during tissue invagination
研究组织内陷过程中机械力的产生
- 批准号:
9061419 - 财政年份:2013
- 资助金额:
$ 24.75万 - 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
- 批准号:
8211679 - 财政年份:2010
- 资助金额:
$ 24.75万 - 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
- 批准号:
8403011 - 财政年份:2010
- 资助金额:
$ 24.75万 - 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
- 批准号:
7770569 - 财政年份:2010
- 资助金额:
$ 24.75万 - 项目类别:
相似国自然基金
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
- 批准号:82373082
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
AhR通过泛素化降解Rev-erb-α/β引起肾小管上皮细胞脂质合成异常促进肾脏纤维化的机制研究
- 批准号:82300834
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
角质形成细胞中TLR7介导的NF-κB异常活化在玫瑰痤疮发病中的作用及机制研究
- 批准号:82373508
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
β-巨噬细胞环路障碍导致胰岛素分泌异常中GPCR所介导的信号机制研究
- 批准号:82330022
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
支持细胞Mettl16功能异常在睾丸发育障碍中的作用与机制研究
- 批准号:82371606
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
- 批准号:
8211679 - 财政年份:2010
- 资助金额:
$ 24.75万 - 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
- 批准号:
8403011 - 财政年份:2010
- 资助金额:
$ 24.75万 - 项目类别:
Investigating the molecular and mechanical regulation of pulsed actomyosin contra
研究脉冲肌动球蛋白拮抗剂的分子和机械调节
- 批准号:
7770569 - 财政年份:2010
- 资助金额:
$ 24.75万 - 项目类别: