Antigen-specific T-cell Activation, Application to Vaccines for Cancer and AIDS
抗原特异性T细胞激活,在癌症和艾滋病疫苗中的应用
基本信息
- 批准号:8763673
- 负责人:
- 金额:$ 357.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AIDS VaccinesAcquired Immunodeficiency SyndromeAdenovirusesAdjuvantAffinityAgonistAnimalsAntigensAvidityBackBacteriaBeliefBindingBiological PreservationCCL20 geneCCR9 geneCD4 Positive T LymphocytesCD8B1 geneCancer EtiologyCancer PatientCancer VaccinesCell physiologyCellsClinical TrialsColonColorectalCooperative Research and Development AgreementCyclic GMPCytotoxic T-LymphocytesDetectionDoseDrug FormulationsERBB2 geneEpitopesEquilibriumEudragitGoalsGrowthHIVHIV vaccineHLA-A2 AntigenHistocompatibilityHomingHumanImmuneImmune responseImmunityImmunologic MonitoringImmunologyIn VitroInterferon Type IIInterleukin-12Interleukin-13Interleukin-15Interleukin-17Interleukin-2Intestinal BypassesLamina PropriaLarge IntestineLarge granular lymphocyteLifeLigandsLipidsLungMacacaMalignant NeoplasmsMalignant neoplasm of prostateMammary NeoplasmsMapsMeasuresMediator of activation proteinModificationMolecularMonoclonal AntibodiesMucosal ImmunityMucous MembraneMusNeoplasm MetastasisNitric Oxide SynthaseOralPSA levelPathway interactionsPatientsPeptidesPhasePhase II Clinical TrialsPlacebo ControlProductionPublishingRandomizedRecombinantsRegulatory PathwayRegulatory T-LymphocyteResearchRoche brand of trastuzumabSIVSiteSmall IntestinesStaining methodStainsStomachSulfoglycosphingolipidsT cell responseT-Cell ActivationT-LymphocyteTestingThymus GlandTimeTissuesToll-like receptorsTransforming Growth Factor betaTranslatingTranslationsTransmembrane DomainTumor ImmunityTumor Necrosis Factor-alphaVaccine AdjuvantVaccine DesignVaccinesVaginaViralViral Load resultVirusVirus DiseasesZNF145 geneanergyarmcancer immunotherapycancer therapycell typechemokinecytokineextracellularfollow-uphuman TNF proteinimmunogenicityimprovedinhibiting antibodykillingslymph nodesmelanomamethylmethacrylate-methacrylic acid copolymermouse modelmucosal vaccinenanoparticleneoplastic cellnonhuman primatenovelnovel strategiesparticlepreventrectalresponsetransmission processtumorvaccine delivery
项目摘要
The strategies under Goals above involve several steps that together comprise a push-pull approach. First, we optimize the antigen to improve immunogenicity by epitope enhancement, increasing affinity for MHC. We have done this for 2 new prostate cancer antigens, TARP and POTE. We fully accrued a phase I/II TARP clinical trial in D0 prostate cancer patients with rising PSA levels using a TARP peptide that we epitope-enhanced to improve HLA-A2 binding and a second high affinity one we mapped. The slope of PSA rise significantly decreased among 72% of 40 patients (p = 0.0012) at 24 wks and 74% (p = 0.0004) at 48 wks, suggesting slowing of cancer growth. A randomized placebo-controlled phase II trial is to open in early FY14. The second step is to push the response with molecular adjuvants, such as cytokines, Toll-like receptor (TLR) ligands and NKT agonists, to improve not only the quantity but also the quality of the response. We published that IL-15 is an important mediator of CD4 T cell help for CD8 T cells and also that IL-15 increased the avidity of the CD8 T cells, needed for effective clearance of virus or tumor cells. We translated this to humans showing that IL-15 could substitute for CD4 help to induce a primary in vitro CD8 T cell response of naive T cells whereas IL-2 could not, and restored alloresponsiveness of CD8 T cells from HIV-infected patients to normal levels. We also found that IL-1beta as adjuvant could enhance CD8 T cell responses and skew CD4 help to Th17. We found surprisingly that the Th17 CD4 cells were not good helpers for a CD8 T cell response as measured by IFNgamma production, but rather they skewed the CD8 response to IL-17 production through an effect on DCs. We also investigated TLR ligands as adjuvants, as these can mature DCs and induce production of cytokines like IL-12 and IL-15. We published that a synergistic triple TLR ligand combination induces more effective protection against virus infection by inducing higher avidity T cells, and more IL-15 production. We tested the combination of triple TLR ligands, IL-15, both or neither as vaccine adjuvants in a peptide-prime, MVA-boost mucosal vaccine for SIV in macaques, challenging intrarectally with SIVmac251. Only macaques receiving both showed partial protection. In the adaptive immune arm, only polyfunctional CD8 T cells specific for SIV antigens, but not total specific T cells, correlated with protection. In the innate immune arm, the adjuvants induced long-lived innate protection by APOBEC3G. These adjuvants also increased CD4 cell preservation in the gut, independent of viral load. Adding a PD-1 blocker and an NKT cell agonist led to substantial CD8-dependent protection (after intrarectal SIV challenge) induced by adjuvant alone. The third step is to target the immune response to the relevant tissue, the mucosa in the case of HIV. We published a novel nanoparticle approach to vaccine delivery to the large intestine, using vaccine nanoparticles coated with Eudragit FS30D to allow oral delivery and release of the particles primarily in the large intestine, bypassing the stomach and small intestine. This effectively substituted for intrarectal delivery to protect against rectal or vaginal viral challenge. Moreover, the novel approach allows selective oral delivery to the small or large intestine depending on the Eudragit formulation, making it possible to distinguish the effect of antigen delivery to these compartments for the first time. We found that delivery to the small intestine, in contrast to delivery to the large intestine, does not induce colorectal or vaginal immunity, but does induce immunity in the small intestine. We have recently adapted this approach to non-human primates in an AIDS vaccine. 2/7 animals so immunized were protected from acquisition of SHIVsf162P4 high dose rectal challenge (p=0.04 vs 0/29 controls), although immune correlates of protection are not yet clear. A follow up is planned. If the small & large intestine are distinct compartments, homing of T cells must be different. We found that homing to the large intestine is governed by DCs from colon patches, using a mechanism involving alpha4beta7 but not CCR9, distinct from that in the small intestine. We are identifying chemokines to selectively target T cells to the colon. In contrast to previous belief, we discovered that CD103+ DCs could patrol the lumen of the colon in crypts associated with colon patches, attracted by CCL20, capture bacteria and bring them back to the lamina propria. We have also found, contrary to accepted dogma, that the type 2 mucosa of the vagina can serve as an inductive site for priming of naive CD8 T cells without help from draining lymph nodes. The fourth step is to remove the brakes, i.e., block negative regulatory mechanisms that inhibit immunity. We previously discovered a new immunoregulatory pathway involving NKT cell suppression of tumor immunity, dependent on IL-13 and TGF-beta. We found that type I NKT cells (using an invariant TCRalpha chain) protected, whereas type II NKT cells (using diverse TCRs) suppressed immunity. Moreover, type I & type II NKT cells cross-regulated each other, defining a new immunoregulatory axis. The balance along the NKT axis could influence subsequent adaptive immune responses. We are researching tumor lipids that stimulate NKT cells, markers to identify type II NKT cells and the mechanisms of suppression. We published that two different regulatory cells (Tregs & type II NKT) suppressed immunity to the same tumor simultaneously but independently, and found that a third T cell, the type I NKT cell, can determine the balance between these two regulatory cells, regulating the regulators. As humans with cancer often have a deficiency of type I NKT cell function, they may require blockade of both T regs and type II NKT cells to reveal tumor immunity. We also recently developed a way to make sulfatide-loaded CD1d multimers that can stain type II NKT cells, allowing detection of these otherwise elusive cells, and found that they are large granular lymphocytes arising independently of PLZF and the thymus in KO and nu/nu mice. Conversely, stimulating with a type I NKT cell agonist can protect against tumors. We discovered the first of a new class of NKT agonist, b-mannosylceramide, that protects against cancer by a mechanism different from that of the classic a-GalCer, being dependent on TNF-alpha and nitric oxide synthase rather than on interferon-gamma. We have now also found that it does not induce long-term anergy induced by a-GalCer, so 2 months after b-ManCer treatment, in contrast to a-GalCer, b-ManCer and a-GalCer both protect. B-ManCer also stimulates human NKT cells, suggesting translation to human cancer therapy. A key mediator of the NKT regulatory pathway and an important regulator of T regulatory cells is TGFbeta. We found that blockade of TGFbeta can protect against certain tumors in mice, and can synergize with anti-cancer vaccines in 2 mouse models, dependent on CD8 T cells. We have translated this into a clinical trial of a human anti-TGFbeta monoclonal antibody in a CRADA with Genzyme, in melanoma, showing some activity as a single agent. Finally, we found that an adenovirus vaccine expressing the extracellular and transmembrane (ECTM) domains of HER-2 can cure large established mammary cancers and lung metastases in mice. The mechanism depends on antibodies that inhibit HER-2 function, and is FcR independent, unlike Herceptin. We have now made a similar cGMP recombinant adenovirus expressing the human HER-2 ECTM domains and opened a clinical trial in HER-2+ cancer patients, with 5 patients accrued so far.
以上目标的策略涉及多个步骤,共同构成了推动力的方法。首先,我们优化抗原以通过增强表位来提高免疫原性,从而提高对MHC的亲和力。我们已经为2种新的前列腺癌抗原,篷布和pote做到了这一点。我们使用TARP肽的D0前列腺癌患者进行了I/II期TARP临床试验,使用TARP肽增强了PSA水平上升,我们表现为改善HLA-A2结合和我们映射的第二个高亲和力。在24周的40例患者中,有72%(p = 0.0012)和74%(p = 0.0004)在48周时,PSA的斜率显着降低,表明癌症生长放缓。一项随机的安慰剂对照II期试验将于2014年初开放。第二步是用分子佐剂来推动反应,例如细胞因子,类似收费的受体(TLR)配体和NKT激动剂,不仅提高了数量,而且可以提高反应的质量。我们发表了IL-15是CD4 T细胞的CD4 T细胞帮助的重要介质,并且IL-15增加了CD8 T细胞的亲和力,这是有效清除病毒或肿瘤细胞所需的。我们将其转换为人类,表明IL-15可以代替CD4帮助诱导天真T细胞的原发性CD8 T细胞反应,而IL-2则无法诱导IL-2,并恢复了来自HIV感染的患者的CD8 T细胞的同种异反应性。我们还发现,IL-1BETA作为辅助物可以增强CD8 T细胞反应,并对Th17的CD4帮助。我们惊讶地发现,TH17 CD4细胞不是IFNGAMMA生产测量的CD8 T细胞反应的好帮助者,而是通过对DCS的影响使CD8对IL-17产生的响应偏斜。我们还研究了TLR配体作为佐剂,因为这些配体可以成熟DC并诱导IL-12和IL-15等细胞因子的产生。我们发表了说,一种协同的三重TLR配体组合通过诱导更高的亲发性T细胞和更多的IL-15产生来引起对病毒感染的更有效保护。我们测试了三型TLR配体IL-15的组合,无论是在肽杆菌中,还是在肽中的MVA-促进粘膜疫苗中用于猕猴中的疫苗佐剂,在猕猴中进行了SIV,对SIVMAC251进行了内部挑战。只有接受两者的猕猴显示部分保护。在自适应免疫臂中,仅针对SIV抗原的多功能CD8 T细胞,而不是与保护相关的总特异性T细胞。在先天的免疫臂中,佐剂引起了Apobec3g的长期先天保护。这些佐剂还增加了肠道中的CD4细胞保存,与病毒载量无关。单独添加PD-1阻滞剂和NKT细胞激动剂,从而从佐剂诱导了实质性的CD8依赖性保护(直肠内部SIV挑战之后)。第三步是针对对HIV的相关组织的免疫反应,即粘膜。我们使用涂有eudragit FS30D的疫苗纳米颗粒发表了一种新型的纳米颗粒方法,用于疫苗向大肠输送到大肠,以允许口服递送和释放颗粒,主要是在大肠中,绕过胃和小肠。这有效地取代了直肠内输送,以防止直肠或阴道病毒挑战。此外,新颖的方法可以根据Eudragit配方选择性地向小肠或大肠输送,从而可以首次区分抗原递送到这些隔室的效果。我们发现,与传递到大肠相比,向小肠的传递不会引起大肠或阴道免疫,而是诱导小肠的免疫力。我们最近将这种方法适应了艾滋病疫苗中的非人类灵长类动物。尽管尚不清楚免疫相关性,但保护了如此免疫的2/7动物免受SHIVSF162P4高剂量直肠挑战的获取(p = 0.04 vs 0/29控制)。计划进行后续。如果小肠和大肠是不同的隔室,则T细胞的归巢必须不同。我们发现,向大肠归寄养的是使用α4Beta7但不与CCR9的机制支配的DC,但与小肠中不同。我们正在识别趋化因子,以选择性地靶向T细胞到结肠。与以前的信念相反,我们发现CD103+ DC可以在与结肠斑块相关的地下室中巡逻结肠的腔,被CCL20吸引,捕获细菌并将它们带回层次。我们还发现,与公认的教条相反,阴道的2型粘膜可以用作启动幼稚CD8 T细胞的电感部位,而无需排出淋巴结的帮助。第四步是去除制动器,即阻止抑制免疫力的负调控机制。我们以前发现了一种新的免疫调节途径,涉及抑制肿瘤免疫的NKT细胞,这取决于IL-13和TGF-β。我们发现,I型NKT细胞(使用不变的tcralpha链)受到保护,而II型NKT细胞(使用不同的TCR)抑制了免疫力。此外,I型和II型NKT细胞相互交叉调节,定义了新的免疫调节轴。沿NKT轴的平衡可能会影响随后的适应性免疫反应。我们正在研究刺激NKT细胞的肿瘤脂质,标记以鉴定II型NKT细胞和抑制机制。我们发表了两个不同的调节细胞(Tregs&II型NKT)同时但独立地抑制了对同一肿瘤的免疫力,发现第三个T细胞(I型I NKT细胞)可以确定这两个调节细胞之间调节调节剂之间的平衡。由于患有癌症的人通常缺乏I型NKT细胞功能,因此他们可能需要封闭T Regs和II型NKT细胞以揭示肿瘤免疫力。最近,我们还开发了一种制造硫化物载有硫化物的CD1D多聚体的方法,该多聚体可以对II型NKT细胞染色,从而允许检测这些原本难以捉摸的细胞,并发现它们是KO和NU/NU小鼠中独立于PLZF和胸腺产生的大颗粒状淋巴细胞。相反,用I型NKT细胞激动剂刺激可以预防肿瘤。我们发现了一种新的NKT激动剂B-甘露凯酰胺中的第一类,该机制通过与经典A-galcer不同的机制来预防癌症,依赖于TNF-α和一氧化氮合酶而不是Interferon-Gamma。现在,我们还发现,与A-Galcer,B-Mancer和A-Galcer相比,B-Mancer治疗后2个月,它不会引起A-Galcer引起的长期反感。 B-癌还刺激了人类NKT细胞,这表明将人类癌症疗法转化为。 TGFBETA是NKT调节途径和T调节细胞的重要调节剂的关键介体。我们发现,TGFBETA的封锁可以预防小鼠的某些肿瘤,并且可以与2种小鼠模型中的抗癌疫苗协同作用,这取决于CD8 T细胞。我们已经将其转化为黑色素瘤中的Crada中人类抗TGFBETA单克隆抗体的临床试验,显示出某种活性作为单一药物。最后,我们发现HER-2的腺病毒疫苗表达了HER-2的细胞外和跨膜(ECTM)结构域可以治愈小鼠中大型已建立的乳腺癌和肺转移。该机制取决于抑制HER-2功能的抗体,并且与Herceptin不同。现在,我们已经制作了类似的CGMP重组腺病毒,表达了人类HER-2 ECTM结构域,并在HER-2+癌症患者中开了一项临床试验,到目前为止,有5例患者累积了。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAY A BERZOFSKY其他文献
JAY A BERZOFSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAY A BERZOFSKY', 18)}}的其他基金
Vaccine and immunotherapy strategies for cancer and viruses causing cancer
针对癌症和致癌病毒的疫苗和免疫治疗策略
- 批准号:
10487175 - 财政年份:
- 资助金额:
$ 357.16万 - 项目类别:
Antigen-specific T-cell activation, application to vaccines for Cancer and AIDS
抗原特异性 T 细胞激活,在癌症和艾滋病疫苗中的应用
- 批准号:
6433339 - 财政年份:
- 资助金额:
$ 357.16万 - 项目类别:
Antigen-specific T-cell activation, application to vacci
抗原特异性T细胞激活,在疫苗中的应用
- 批准号:
6946729 - 财政年份:
- 资助金额:
$ 357.16万 - 项目类别:
Antigen-specific T-cell activation--cancer /AIDS vaccine
抗原特异性T细胞激活--癌症/艾滋病疫苗
- 批准号:
6558253 - 财政年份:
- 资助金额:
$ 357.16万 - 项目类别:
Antigen-specific T-cell activation, application to vacci
抗原特异性T细胞激活,在疫苗中的应用
- 批准号:
7331380 - 财政年份:
- 资助金额:
$ 357.16万 - 项目类别:
相似海外基金
In vitro and in vivo analysis of susceptibility of Ad26 vector-induced CD4 T cells to HIV/SIV
Ad26载体诱导的CD4 T细胞对HIV/SIV敏感性的体外和体内分析
- 批准号:
10010193 - 财政年份:2020
- 资助金额:
$ 357.16万 - 项目类别:
In vitro and in vivo analysis of susceptibility of Ad26 vector-induced CD4 T cells to HIV/SIV
Ad26载体诱导的CD4 T细胞对HIV/SIV敏感性的体外和体内分析
- 批准号:
10115603 - 财政年份:2020
- 资助金额:
$ 357.16万 - 项目类别:
Impact of a SARS-CoV-2 vaccine on gut integrity, immune activation and efficacy of ART
SARS-CoV-2 疫苗对肠道完整性、免疫激活和 ART 疗效的影响
- 批准号:
10175857 - 财政年份:2018
- 资助金额:
$ 357.16万 - 项目类别:
Development of a novel PCP Vaccine for AIDS patients
为艾滋病患者开发新型 PCP 疫苗
- 批准号:
8210723 - 财政年份:2011
- 资助金额:
$ 357.16万 - 项目类别:
Development of a novel PCP Vaccine for AIDS patients
为艾滋病患者开发新型 PCP 疫苗
- 批准号:
8306677 - 财政年份:2011
- 资助金额:
$ 357.16万 - 项目类别: