Vaccine strategies for HIVAIDS

HIV/艾滋病疫苗策略

基本信息

  • 批准号:
    10487152
  • 负责人:
  • 金额:
    $ 286.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

The strategies above involve several steps that together comprise a push-pull approach, to optimize antigen structure, improve quantity & quality of the response, & remove regulatory barriers. Blocking negative regulation in HIV & vaccine strategies: We carried out epitope enhancement (sequence modification to improve MHC binding) to increase MHC binding of epitopes from several viral antigens including HIV, and showed these improved vaccine efficacy. We have pioneered the use of anti-TGFb as a novel checkpoint inhibitor, given that TGFb is one of the most immunosuppressive cytokines known. We even showed preliminary evidence of efficacy and safety in a clinical trial in melanoma patients. We have also compared combinations of checkpoint inhibitors and anti-TGF-b in enhancing vaccine efficacy in mice, and found preliminary data for synergy among anti-TGFb, anti-LAG3, anti-TIGIT & anti-PDL1. These strategies are applicable to both HIV and cancer. Cytokines as vaccine adjuvants for HIV and induction of high avidity T cells. Our earlier work first showed that high avidity T cells were more effective at clearing viral infections. We found ways to induce them with cytokines & TLR ligands, including expressing IL-15 in the vaccine, and inclusion of costimulatory molecules, in collaborations with Tom Waldmann and with Jeff Schlom, respectively. The quality of response proved more important than the quantity. We recently found, using a novel adjuvant, CAF09, that we could lower the vaccine dose sufficiently to induce higher avidity CD4 T cells to better clear HIV-gp160-expressing virus infection in mice. We also found that IL-1b induces Th17 helper cells that do not help Tc1 CD8 T cells that protect against vaccinia virus expressing HIV gp160. Rather, they skew the CD8 response to Tc17 cells that make IL-17 & do not protect. TGF-b blockade can prevent this problem. We also found that IL-21 synergizes with IFN-g to induce IFN-stimulated genes & clear Citrobacter colitis through an effect on STAT1. We also examined combinations of cytokines & TLR ligands as vaccine adjuvants and found greatest efficacy of IL-15 + TLR3 and TLR9 agonists, but also some efficacy of IL-12 + GM-CSF. Mucosal immunity, microbiome & HIV/SIV vaccines. About 85% of HIV transmission is mucosal. We found that a mucosal T cell vaccine can impact the initial mucosal nidus of infection. We are studying induction & trafficking of T cells, DCs, & MDSCs among mucosal compartments to optimize mucosal vaccine efficacy. In mice, we found that T cells could be directly primed in the vaginal mucosa, despite lack of organized lymphoid structures, contrary to textbook dogma. We also discovered that colonic DCs can imprint CD8 T cells to home back to the colon preferentially, based on differential retinoic acid expression vs. small intestine DCs. We discovered that altering a cathepsin S cleavage site could protect an immunodominant epitope of HIV gp120 from degradation in endosomes during cross-presentation, providing proof of concept for a novel mechanism of virus escape for HIV that infects mostly non-APCs. Using NHP models, we found that activated mucosal T cells determine susceptibility to SIV/HIV infection (transmission), eclipse time prior to systemic viral detection, & acute viral load. We found that even in naive animals, gut microbiota can strongly affect susceptibility to transmission, by immune activation, & also affect vaccine efficacy. Further, we found that vaccines can induce MDSCs that counteract vaccine protection, & also infection can affect trafficking of MDSCs. We also demonstrated for the first time that MDSCs could be infected by SHIV in vivo. As most HIV transmission is through mucosal surfaces and HIV homes to the gut mucosa, we have designed and invented a nanoparticle vaccine delivered orally but coated to pass through the stomach intact and to be released selectively in the large intestine where it induces CTL responses in the large intestine and vaginal mucosa and protects against rectal or vaginal challenge with a virus. We translated our oral nanoparticle (NP) approach to macaque SIV vaccines, finding reduced risk against SHIV rectal acquisition in 2 studies. Surprisingly, we discovered that protection against SIV acquisition in 3 studies can occur without anti-envelope antibodies. While T cell immunity was induced, it did not correlate with protection, and protection was not abrogated by CD8 T cell depletion. Rather, protection correlated with trained innate immunity, involving monocyte "memory" for SIV in induction of cytokines maintained by epigenetic changes. We have carried out RNAseq to determine what changes occur in monocytes after immunization, leading to new mechanistic hypotheses. Also, we are combining an SIV vaccine & mucosal NP boost to increase mucosal immunity with a microbicide to reduce the viral inoculum in an OAR-funded study. Our hypothesis is that priming and boosting with mucosally delivered nanoparticles containing V2 loop antigens will both increase mucosal immunity to protect against intrarectal SIV challenge, and selectively expand immune responses against the V2 loop that has been shown to correlate with protection in the RV144 phase III human trial. Initial results show that priming and boosting orally with NPs containing a V2-loop pentamer can increase protection compared to the base vaccine alone consisting of SIV gag & env DNA, ALVAC expressing gp120, and deltaV1 gp120 protein in alum. Immune correlates are under study.
上面的策略涉及多个步骤,这些步骤共同构成了推拉方法,以优化抗原结构,提高响应的数量和质量,并消除监管障碍。阻止艾滋病毒和疫苗策略中的负调节:我们进行了表位增强(序列修饰以改善MHC结合),以增加包括HIV在内的几种病毒抗原的表位的MHC结合,并显示了这些提高的疫苗效力。鉴于TGFB是已知的最免疫抑制性细胞因子之一,我们已经开创了抗TGFB作为新型检查点抑制剂的使用。我们甚至在黑色素瘤患者的临床试验中显示了功效和安全性的初步证据。我们还比较了检查点抑制剂和抗TGF-B在增强小鼠疫苗功效中的组合,并发现了抗TGFB,抗LAG3,抗词素和抗PDL1的协同作用的初步数据。这些策略适用于艾滋病毒和癌症。细胞因子作为疫苗佐剂,用于HIV和诱导高发性T细胞。我们先前的工作首先表明,高潮T细胞在清除病毒感染方面更有效。我们找到了用细胞因子和TLR配体诱导它们的方法,包括在疫苗中表达IL-15,并分别与汤姆·沃尔德曼(Tom Waldmann)和杰夫·施洛姆(Jeff Schlom)合作。响应的质量比数量更重要。我们最近使用一种新型辅助CAF09发现,我们可以降低足够的疫苗剂量,以诱导更高的亲发性CD4 T细胞,以更好地清除小鼠中表达HIV-GP160的病毒感染。我们还发现,IL-1B诱导Th17辅助细胞,这些细胞无助于预防表达HIV GP160的牛ac病毒的TC1 CD8 T细胞。相反,它们偏向于使IL-17且不能保护的TC17细胞的CD8响应。 TGF-B封锁可以防止此问题。我们还发现,IL-21通过对STAT1的影响来诱导IFN-G协同诱导IFN刺激的基因和清晰的柠檬酸杆菌结肠炎。我们还研究了细胞因子和TLR配体的组合作为疫苗佐剂,并发现IL-15 + TLR3和TLR9激动剂的功效最大,但也发现IL-12 + GM-CSF的功效。粘膜免疫,微生物组和HIV/SIV疫苗。大约85%的艾滋病毒传播是粘膜。我们发现,粘膜T细胞疫苗会影响最初的感染粘膜。我们正在研究粘膜室中T细胞,DC和MDSC的诱导和运输,以优化粘膜疫苗疗效。在小鼠中,我们发现,尽管缺乏有组织的淋巴结构,但与教科书教义相反,T细胞可以直接在阴道粘膜中引发。我们还发现,基于视黄酸的表达与小肠DC,结肠DC可以将CD8 T细胞重新归为归为结肠。我们发现,改变组织蛋白酶的裂解位点可以保护HIV GP120的免疫主导表位免受跨表达期间内体内降解的降解,从而为艾滋病毒的新型HIV机制提供了概念证明,该机制大多是非APC。使用NHP模型,我们发现活化的粘膜T细胞确定了对SIV/HIV感染(传播),全身病毒检测前的日食和急性病毒负荷的敏感性。我们发现,即使在天真的动物中,肠道菌群也会通过免疫激活强烈影响传播的敏感性,并且还会影响疫苗功效。此外,我们发现疫苗可以诱导抵消疫苗保护的MDSC,并且感染也会影响MDSC的贩运。我们还首次证明了MDSC可以被Shiv In Vivo感染。由于大多数HIV传播都是通过粘膜表面和HIV房屋到肠粘膜的,因此我们设计并发明了口服输送但涂有涂层的纳米颗粒疫苗,可通过胃完整地通过,并在大型肠中有选择地释放,在大型肠子中诱导大型肠子和阴道Mucosa和阴道的CTL响应,并保护了与阴道或阴道挑战。我们将口服纳米颗粒(NP)方法转化为猕猴SIV疫苗,发现在2项研究中发现了针对SHIV直肠直肠采集的风险降低。出人意料的是,我们发现在没有抗Envelope抗体的情况下,可以在3项研究中进行SIV获取的保护。虽然诱导T细胞免疫,但与保护无关,并且CD8 T细胞耗竭不会消除保护。相反,保护与训练有素的先天免疫相关,涉及SIV的单核细胞“记忆”,以诱导通过表观遗传变化维持的细胞因子。我们已经进行了RNASEQ,以确定免疫后单核细胞中发生了什么变化,导致了新的机械假设。此外,我们正在结合SIV疫苗和粘膜NP的增强,以在一项由OAR资助的研究中降低菌心的粘膜免疫,以减少病毒接种。我们的假设是,含有V2环抗原的粘膜递送的纳米颗粒的启动和增强都将增加粘膜免疫,以防止直肠内SIV攻击,并选择性地扩展针对RV144阶段III阶段人类试验的V2环路的免疫反应。最初的结果表明,与单独的碱性疫苗相比,与含有V2环五聚体的NP进行口头启动和增强可以增加保护,与仅由SIV GAG&ENV DNA,ALVAC,表达GP120的ALVAC和Deltav1 GP120蛋白质组成的基本疫苗。免疫相关性正在研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAY A BERZOFSKY其他文献

JAY A BERZOFSKY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAY A BERZOFSKY', 18)}}的其他基金

Vaccine and immunotherapy strategies for cancer and viruses causing cancer
针对癌症和致癌病毒的疫苗和免疫治疗策略
  • 批准号:
    10487175
  • 财政年份:
  • 资助金额:
    $ 286.74万
  • 项目类别:
Studies of the SARS-CoV-2 Spike Protein
SARS-CoV-2 刺突蛋白的研究
  • 批准号:
    10926406
  • 财政年份:
  • 资助金额:
    $ 286.74万
  • 项目类别:
Vaccine strategies for HIVAIDS
HIV/艾滋病疫苗策略
  • 批准号:
    10926475
  • 财政年份:
  • 资助金额:
    $ 286.74万
  • 项目类别:
Antigen-specific T-cell activation, application to vaccines for Cancer and AIDS
抗原特异性 T 细胞激活,在癌症和艾滋病疫苗中的应用
  • 批准号:
    6433339
  • 财政年份:
  • 资助金额:
    $ 286.74万
  • 项目类别:
Studies of the SARS-CoV-2 Spike Protein
SARS-CoV-2 刺突蛋白的研究
  • 批准号:
    10702760
  • 财政年份:
  • 资助金额:
    $ 286.74万
  • 项目类别:
Antigen-specific T-cell activation, application to vacci
抗原特异性T细胞激活,在疫苗中的应用
  • 批准号:
    6946729
  • 财政年份:
  • 资助金额:
    $ 286.74万
  • 项目类别:
Antigen-specific T-cell activation--cancer /AIDS vaccine
抗原特异性T细胞激活--癌症/艾滋病疫苗
  • 批准号:
    6558253
  • 财政年份:
  • 资助金额:
    $ 286.74万
  • 项目类别:
Antigen-specific T-cell activation, application to vacci
抗原特异性T细胞激活,在疫苗中的应用
  • 批准号:
    7331380
  • 财政年份:
  • 资助金额:
    $ 286.74万
  • 项目类别:
Studies of the SARS-CoV-2 Spike Protein
SARS-CoV-2 刺突蛋白的研究
  • 批准号:
    10262557
  • 财政年份:
  • 资助金额:
    $ 286.74万
  • 项目类别:
Antigen-specific T-cell Activation, Application to Vaccines for Cancer and AIDS
抗原特异性T细胞激活,在癌症和艾滋病疫苗中的应用
  • 批准号:
    8763673
  • 财政年份:
  • 资助金额:
    $ 286.74万
  • 项目类别:

相似国自然基金

阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
  • 批准号:
    82302281
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
  • 批准号:
    22304039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
  • 批准号:
    82300173
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
  • 批准号:
    82360957
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

ADE-minimized COVID-19 vaccine via epitope focusing and anti-inflammatory innate immunity
通过表位聚焦和抗炎先天免疫实现 ADE 最小化的 COVID-19 疫苗
  • 批准号:
    10161068
  • 财政年份:
    2020
  • 资助金额:
    $ 286.74万
  • 项目类别:
Targeting mTOR to Enhance Immunogenicity and Efficacy of HIV Vaccines
靶向 mTOR 增强 HIV 疫苗的免疫原性和功效
  • 批准号:
    7904448
  • 财政年份:
    2010
  • 资助金额:
    $ 286.74万
  • 项目类别:
Preclinical Development of Full Length Single Chain
全长单链的临床前开发
  • 批准号:
    8306726
  • 财政年份:
    2010
  • 资助金额:
    $ 286.74万
  • 项目类别:
Preclinical Development of Full Length Single Chain
全长单链的临床前开发
  • 批准号:
    8296938
  • 财政年份:
    2010
  • 资助金额:
    $ 286.74万
  • 项目类别:
Vaccine strategies for HIVAIDS
HIV/艾滋病疫苗策略
  • 批准号:
    10926475
  • 财政年份:
  • 资助金额:
    $ 286.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了