Activity Based Tagging of Neurons
基于活动的神经元标记
基本信息
- 批准号:8550801
- 负责人:
- 金额:$ 45.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-30 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAmygdaloid structureAnimalsAreaAutomobile DrivingBehaviorBehavior ControlBehavioralBehavioral ParadigmBrainBrain regionCell NucleusCellsComplexDataDiseaseDisease modelDoxycyclineEpigenetic ProcessExcisionExposure toFluorescenceFunctional disorderGenetic MarkersGoalsGrantHourImageImaging TechniquesIndividualInterventionLearningLifeLinkLocationMemoryMental disordersMethodsMolecularMolecular AnalysisMorphologyMusNeuronsNeurosciencesNoisePatternPerformancePopulationProtein BiosynthesisProteinsRNARecruitment ActivityRelative (related person)ReportingSensorySliceSorting - Cell MovementSpecificityStimulusSystemTechniquesTechnologyTestingTetracyclinesTherapeutic AgentsTimeTissuesTrans-ActivatorsTransgenesTransgenic MiceVariantapproach behaviorbasebrain tissuecell typechromophorecognitive functionconditioned fearexcitatory neuronhigh throughput analysisinformation processingmemory retrievalnervous system disorderperformance testspopulation basedpreventpromoterrelating to nervous systemresearch studyresponsesingle cell analysistool
项目摘要
DESCRIPTION (provided by applicant): Information encoding in the brain is thought to be reflected in the pattern of activation of excitatory neurons in response to a given stimulus. This suggests that, in essence, a neural cell type is defined by the various stimuli and conditions that
recruit its electrical activity. Alterations in activity in specific brain regions are associated wth a variety of neurological and psychiatric diseases and the pharmacological interventions to treat these diseases alter activity in specific circuits. The cellular and molecular changes that underli complex cognitive functions such as learning and memory are likely to occur at critical specific points in the circuits activated by the relevant stimuli. A great deal of effort in neuroscience is
focused on defining these activated circuits however, currently available techniques are limited to discrete brain areas, lack cellular specificity, or provide a record of activity at only a singl time point preventing the identification of consistent patterns of network activation from noise or
the identification of network changes over time in response to intervention. The approach that we will develop in this grant uses a single florescent marker to identify neural activity patterns t two independent time points. This provides a number of advantages over existing technology including, the ability to analyze the brain using high throughput automated imaging techniques, to identify specific cell populations in brain slices based on their activation patterns in the whoe animal for electrophysiological, morphological, or molecular studies, and the ability to apply FACS sorting techniques to the isolation of individual nuclei for epigenetic studies. The two time points at which activity is reported can be separated by at least one week allowing the analysis of circuit changes and target cell populations that are responsive to prolonged behavioral or pharmacological intervention. This should be useful in identifying the critical changes in the brain in response to these therapies.
描述(由申请人提供):大脑中的信息编码被认为反映在兴奋性神经元响应给定刺激的激活模式中。这表明,本质上,神经细胞类型是由各种刺激和条件定义的
招募其电活动。特定大脑区域活动的改变与多种神经和精神疾病相关,治疗这些疾病的药物干预会改变特定回路的活动。学习和记忆等复杂认知功能背后的细胞和分子变化很可能发生在相关刺激激活的回路中的关键特定点上。神经科学领域的大量努力
然而,专注于定义这些激活的电路,目前可用的技术仅限于离散的大脑区域,缺乏细胞特异性,或者仅提供单个时间点的活动记录,从而无法从噪声或噪声中识别网络激活的一致模式。
识别网络随时间的变化以响应干预。我们将在本次资助中开发的方法使用单个荧光标记来识别两个独立时间点的神经活动模式。与现有技术相比,这提供了许多优势,包括能够使用高通量自动成像技术分析大脑,根据动物体内的激活模式识别脑切片中的特定细胞群,以进行电生理学、形态学或分子研究,以及应用 FACS 分选技术分离单个细胞核以进行表观遗传学研究的能力。报告活动的两个时间点可以相隔至少一周,从而可以分析对长期行为或药物干预做出反应的回路变化和靶细胞群。这应该有助于识别大脑响应这些疗法的关键变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK R MAYFORD其他文献
MARK R MAYFORD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK R MAYFORD', 18)}}的其他基金
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
- 批准号:
10226273 - 财政年份:2020
- 资助金额:
$ 45.93万 - 项目类别:
Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
- 批准号:
10037486 - 财政年份:2020
- 资助金额:
$ 45.93万 - 项目类别:
Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
- 批准号:
10415149 - 财政年份:2020
- 资助金额:
$ 45.93万 - 项目类别:
Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
- 批准号:
10629355 - 财政年份:2020
- 资助金额:
$ 45.93万 - 项目类别: