Roles for Mismatch Repair Proteins in Maintaining Genome Stability
错配修复蛋白在维持基因组稳定性中的作用
基本信息
- 批准号:8523903
- 负责人:
- 金额:$ 35.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlanineAllelesAmericanApoptoticBehaviorBindingBiochemicalBiological AssayBiological ModelsBypassCell Cycle ProgressionCellsChromatinColon CarcinomaColorectal CancerComplexConditioned Culture MediaCruciform DNADNADNA DamageDNA RepairDNA SequenceDNA StructureDNA biosynthesisDNA-Directed DNA PolymeraseDataDefectDiseaseDisease ProgressionEukaryotaEvolutionFluorescence MicroscopyFrameshift MutationGenesGeneticGenetic Crossing OverGenetic RecombinationGenome StabilityGlucoseGoalsGrantGrowthHeteroduplex DNAHumanHumulusImmunoglobulin GenesImmunoglobulin Somatic HypermutationInheritedLeadLinkMLH1 geneMalignant NeoplasmsMeiosisMeiotic RecombinationMetalsMethodsMismatch RepairModelingMutagenesisMutationNucleosomesPMS1 genePartner in relationshipPathway interactionsPenetrancePhenotypePopulationProcessProteinsRecruitment ActivityResistanceRoleSaccharomyces cerevisiaeSamplingScanningSignal TransductionSignaling ProteinSodium ChlorideStressStructureTestingTherapeuticTravelVertebral columnWorkYeastsendonucleasefitnessgenome sequencingimprovedinsightinterestmutantnovel diagnosticspreventrecombinational repairrepairedresearch studysample fixationsegregationsensorsingle moleculetool
项目摘要
DESCRIPTION (provided by applicant): Mismatch repair (MMR) improves the fidelity of DNA replication by excising mismatches that result from DNA polymerase misincorporation errors. Msh proteins initiate MMR by binding to DNA mismatches and then interact with Mlh proteins to recruit downstream repair factors that excise the newly replicated strand containing the mismatch. Mutations in MSH and MLH genes confer significant increases (~1000X) in mutation rate and have been implicated in hereditary forms of colon cancer (HNPCC). The mechanisms by which MMR proteins, and in particular Mlh proteins, signal downstream repair and recombination factors are not well understood. We are focused on understanding how two Mlh complexes, Mlh1-Pms1 and Mlh1-Mlh3, function in DNA repair signaling and how genetic incompatibilities between Mlh factors can lead to increased mutation rates. The latter work can provide a better understanding of how cells evolve to become resistant to growth control and therapeutics. In Aim 1 we are analyzing the behavior of single Mlh complexes interacting with DNA using total internal fluorescence microscopy. We are interested in answering two critical questions: 1. How do the Mlh and Msh proteins interact with PCNA on a mismatch DNA template? 2. How does Mlh1-Pms1 bypass obstacles while identifying downstream targets? These studies will take advantage of mutants generated in the lab and are aimed at developing accurate models for early steps in MMR that cannot be accomplished using bulk approaches. Aim 2 is focused on characterizing a role for the Mlh1-Mlh3 complex in MMR and meiotic recombination. We propose to examine the functions of Mlh1-Mlh3 in genetic and biochemical assays, with the goal of understanding how this complex acts in two seemingly unrelated processes. Specifically, will perform an alanine-scan mutagenesis of MLH3 and test the effect of these mutations in MMR and meiotic crossover assays, and willl purify wild-type and mutant Mlh1-Mlh3 to examine interactions with Msh-mismatch complexes in bulk and single-molecule assays, and also test whether the putative endonuclease domain of Mlh1-Mlh3 acts on a variety of substrates including those containing mismatch loops and structures predicted to be recombination intermediates. Aim 3 uses MMR incompatibilities as a model to study adaptive evolution and disease progression. MLH incompatibility leads to an elevated mutation rate, which has the potential to increase the rate of both adaptive and deleterious mutations. We are interested in testing if a MMR incompatibility will initially increase evolvability through acquirig mutations, both beneficial and deleterious, allowing fixation of adaptive mutations in large populations through reacquisition of MMR functions by subsequent mating/recombination. We will assess the fitness of compatible and incompatible MLH combinations in non-selective and selective conditions. Such experiments, combined with methods used previously to identify mutations responsible for DNA damage sensitivity and recessive lethality phenotypes, can also provide insights into understanding how driver mutations arise in HNPCC and other cancers.
描述(由申请人提供):不匹配修复(MMR)通过切除由DNA聚合酶失物误差误差引起的不匹配的DNA复制的保真度。 MSH蛋白通过与DNA不匹配的结合,然后与MLH蛋白相互作用以募集下游修复因子,从而启动MMR,从而募集含有不匹配的新复制链的下游修复因子。 MSH和MLH基因的突变赋予突变率显着增加(约1000倍),并与遗传形式结肠癌(HNPCC)有关。 MMR蛋白,尤其是MLH蛋白,信号下游修复和重组因子的机制尚不清楚。我们专注于了解两个MLH复合物MLH1-PMS1和MLH1-MLH3如何在DNA修复信号传导中功能以及MLH因子之间的遗传不兼容如何导致突变率提高。后者的工作可以更好地了解细胞如何发展对生长控制和治疗剂的抗性。在AIM 1中,我们正在分析使用总内荧光显微镜与DNA相互作用的单个MLH复合物的行为。我们有兴趣回答两个关键问题:1。在不匹配DNA模板上,MLH和MSH蛋白如何与PCNA相互作用? 2. MLH1-PMS1在识别下游目标时如何绕过障碍?这些研究将利用实验室中产生的突变体,旨在为MMR的早期步骤开发准确的模型,而MMR无法使用批量方法来完成。 AIM 2的重点是表征MLH1-MLH3复合物在MMR和减数分裂重组中的作用。我们建议研究MLH1-MLH3在遗传和生化测定中的功能,目的是了解该复合物如何在两个看似无关的过程中起作用。 Specifically, will perform an alanine-scan mutagenesis of MLH3 and test the effect of these mutations in MMR and meiotic crossover assays, and willl purify wild-type and mutant Mlh1-Mlh3 to examine interactions with Msh-mismatch complexes in bulk and single-molecule assays, and also test whether the putative endonuclease domain of Mlh1-Mlh3 acts on a variety of substrates包括包含被预测为重组中间体的不匹配循环和结构的那些。 AIM 3使用MMR不相容性作为研究适应性进化和疾病进展的模型。 MLH不相容性导致突变率升高,这有可能提高自适应和有害突变的速率。我们有兴趣测试MMR不兼容性是否最初通过Acquirig突变(有益和有害的)提高可变性,从而通过随后的交配/重组来重新稳定大量人群中的自适应突变。我们将评估在非选择性和选择性条件下兼容和不兼容的MLH组合的适应性。这种实验与先前用于识别导致DNA损伤敏感性和隐性致死性表型突变的方法相结合,也可以提供有关了解HNPCC和其他癌症中驱动器突变如何出现的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric E. Alani其他文献
Eric E. Alani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric E. Alani', 18)}}的其他基金
Roles for Mismatch Repair Proteins in Maintaining Genome Stability
错配修复蛋白在维持基因组稳定性中的作用
- 批准号:
10591126 - 财政年份:2022
- 资助金额:
$ 35.39万 - 项目类别:
Roles for Mismatch Repair Proteins in Maintaining Genome Stability
错配修复蛋白在维持基因组稳定性中的作用
- 批准号:
10727007 - 财政年份:2020
- 资助金额:
$ 35.39万 - 项目类别:
Roles for Mismatch Repair Proteins in Maintaining Genome Stability
错配修复蛋白在维持基因组稳定性中的作用
- 批准号:
10544292 - 财政年份:2020
- 资助金额:
$ 35.39万 - 项目类别:
Roles for Mismatch Repair Proteins in Maintaining Genome Stability
错配修复蛋白在维持基因组稳定性中的作用
- 批准号:
10317076 - 财政年份:2020
- 资助金额:
$ 35.39万 - 项目类别:
Roles for Mismatch Repair Proteins in Maintaining Genome Stability
错配修复蛋白在维持基因组稳定性中的作用
- 批准号:
10619197 - 财政年份:2020
- 资助金额:
$ 35.39万 - 项目类别:
Roles for Mismatch Repair Proteins in Maintaining Genome Stability
错配修复蛋白在维持基因组稳定性中的作用
- 批准号:
10077565 - 财政年份:2020
- 资助金额:
$ 35.39万 - 项目类别:
Roles for Mismatch Repair Proteins in Maintaining Genome Stability
错配修复蛋白在维持基因组稳定性中的作用
- 批准号:
7887048 - 财政年份:2009
- 资助金额:
$ 35.39万 - 项目类别:
Role of Mismatch Repair in Maintaining Genome Stability
错配修复在维持基因组稳定性中的作用
- 批准号:
7092137 - 财政年份:1995
- 资助金额:
$ 35.39万 - 项目类别:
ROLE OF MISMATCH REPAIR IN MAINTAINING GENOME STABILITY
错配修复在维持基因组稳定性中的作用
- 批准号:
6525783 - 财政年份:1995
- 资助金额:
$ 35.39万 - 项目类别:
Role of Mismatch Repair in Maintaining Genome Stability
错配修复在维持基因组稳定性中的作用
- 批准号:
7262979 - 财政年份:1995
- 资助金额:
$ 35.39万 - 项目类别:
相似国自然基金
环D-脯氨酸D-苯丙氨酸对金黄色葡萄球菌的受体定位及对能量代谢影响
- 批准号:31460425
- 批准年份:2014
- 资助金额:52.0 万元
- 项目类别:地区科学基金项目
NO对采后桃果实苯丙氨酸代谢的影响及其与诱导抗病性形成的关系
- 批准号:31101371
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
日粮酪氨酸、苯丙氨酸、色氨酸对泰和乌鸡合成黑色素影响及其适宜供给量、理想模式研究
- 批准号:30660129
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
苯丙氨酸影响钙/Rho GTPases信号通路的机制研究
- 批准号:30570689
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
酵母丙氨酸tRNA的结构改变对蛋白质生物合成的影响
- 批准号:39070229
- 批准年份:1990
- 资助金额:5.0 万元
- 项目类别:面上项目
相似海外基金
Perfluoroalkyl substances and non-alcoholic fatty liver disease in children: Leveraging magnetic resonance imaging to unravel potential mechanisms and exposure mixture effects
全氟烷基物质与儿童非酒精性脂肪肝:利用磁共振成像揭示潜在机制和暴露混合物效应
- 批准号:
10646759 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
The role of S-glutathione in regulating cardiac myosin binding protein-C function
S-谷胱甘肽在调节心肌肌球蛋白结合蛋白-C功能中的作用
- 批准号:
10749281 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Defining cell intrinsic and extrinsic regulators of ferroptosis in pancreatic cancer
定义胰腺癌铁死亡的细胞内在和外在调节因子
- 批准号:
10679812 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别:
Ryanodine receptor structure and function in heart failure
Ryanodine 受体结构和心力衰竭中的功能
- 批准号:
10628917 - 财政年份:2023
- 资助金额:
$ 35.39万 - 项目类别: