The role of S-glutathione in regulating cardiac myosin binding protein-C function
S-谷胱甘肽在调节心肌肌球蛋白结合蛋白-C功能中的作用
基本信息
- 批准号:10749281
- 负责人:
- 金额:$ 6.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2026-09-29
- 项目状态:未结题
- 来源:
- 关键词:AddressAdrenergic AgentsAffectAlanineBiological AssayCalciumCardiacCardiac MyocytesCardiac MyosinsCardiac healthCell Membrane PermeabilityCellsContractile ProteinsCyclic AMP-Dependent Protein KinasesCysteineDataDevelopmentDiamondDisulfidesDown-RegulationEtiologyFunctional disorderGelGlutathioneGlutathione DisulfideHeartHeart DiseasesHeart failureIn SituIn VitroIncubatedIndividualIschemiaKineticsKnock-outKnockout MiceLeadLocationMammalian CellMass Spectrum AnalysisMeasurementMeasuresMicrofilamentsModelingModificationMusMuscle CellsMuscle functionMyocardial IschemiaN-terminalOxidation-ReductionOxidative StressPaste substancePeptide HydrolasesPermeabilityPharmaceutical PreparationsPhosphorylationPost-Translational Protein ProcessingPro-Q aerosol foamProteinsPublishingRattusReactive Oxygen SpeciesRecombinantsRegulationRelaxationResearch ProposalsRoleSarcomeresSignal TransductionSiteSite-Directed MutagenesisSkinStainsStressSulfhydryl CompoundsTertiary Protein StructureTestingTherapeuticTobacco useViralWestern Blottingcardioprotectionexperimental studyfightingfunctional improvementhypertensiveimprovedmechanical forcemouse modelmyosin-binding protein Cnovelpreventprotein functionranolazineresponse
项目摘要
Project Summary
Increased oxidative stress is associated with cardiac cell dysfunction in heart disease. An unbalanced redox
state leads to an increase in the post-translational modification of S-Glutathione, which modifies cysteine
residues on key myofilament proteins, such as cardiac myosin binding protein-C (cMyBP-C). cMyBP-C
regulates contraction and relaxation of the sarcomere. The phosphorylation of cMyBP-C by Protein Kinase A
(PKA) is cardioprotective. Yet, in the failing heart, phosphorylation levels of cMyBP-C are reduced, contrary to
an increase in S-glutathionylated cMyBP-C. When cardiomyocytes were incubated with oxidized glutathione
(GSSG), myofilament calcium sensitivity increased and cross-bridge kinetics slowed. Prior experiments were
unable to isolate the specific effects of S-glutathionylated cMyBP-C (i.e., without the effects of other S-
glutathionylated proteins) nor the specific sites responsible for the functional change. Phosphorylation and S-
glutathionylation of cMyBP-C may have antagonistic effects. Incubating three N’-terminal domains of cMyBP-C
with GSSG led to a significant increase in S-glutathionylated cMyBP-C and a downregulation in cMyBP-C
phosphorylation. These results indicate that the decrease in cMyBP-C phosphorylation and consequent loss of
the cardioprotective effect of phosphorylated cMyBP-C seen in the failing heart could be due to an increase in
S-glutathionylated cMyBP-C. In addition, the anti-ischemic drug, ranolazine, has been shown to improve
diastolic function to sham levels, which correlated with S-glutathionylated cMyBP-C. These data indicate that a
currently available cardiac therapy might be useful in moderating the levels of cMyBP-C S-glutathionylation.
Thus, this proposal will identify how the interaction between phosphorylation and S-glutathionylation affects
cardiomyocyte function under normal, elevated, and therapeutically treated conditions using our novel “cut and
paste” SpyC3 mouse model. Protein domains C0C7 of cMyBP-C will be “cut” from the sarcomere using the
tobacco etch viral protease and, after washing steps, recombinant C0C7sc protein with and without modified
cysteine residues will replace its location within its endogenous location in the sarcomere. Site-directed
mutagenesis will be used to generate cysteine substitution constructs preventing S-glutathionylation at specific
residues and the functional effects of each construct will be measured using the “cut and paste” model. Dual
incubation of PKA and GSSG with and without ranolazine treatment will determine the functional effects of this
interaction. A combination of ProQ Diamond staining, immunoblotting, Phos-tag gels, and mass spectrometry
will be used to measure total modification levels and identify the site-specific modifications. Results from this
proposal will be the first to identify the functional effects of individual cMyBP-C S-glutathionylated residues and
of phosphorylation and S-glutathionylation cMyBP-C crosstalk. This research proposal will lead to a better
understanding of the effects of oxidative stress on cMyBP-C function, its potential to affect phosphorylation in
the heart, and if a currently available therapeutic might benefit hearts affected by oxidative stress.
项目摘要
氧化应激增加与心脏病中心脏细胞功能障碍有关。不平衡的氧化还原
状态导致S-Glutathione的翻译后修饰增加,这会改变半胱氨酸
关键肌丝蛋白上的残基,例如心脏肌球蛋白结合蛋白-C(CMYBP-C)。 CMYBP-C
调节肌节的收缩和放松。蛋白激酶A对CMYBP-C的磷酸化
(PKA)是心脏保护。然而,在心脏失败的心脏中,CMYBP-C的磷酸化水平降低,与
S-glutathioneyplated CMYBP-C的增加。当心肌细胞与氧化的谷胱甘肽孵育时
(GSSG),肌丝钙敏感性增加,跨桥动力学减慢。先前的实验是
无法隔离s-谷胱甘肽化的cmybp-c的特定作用(即,没有其他s-的影响
谷胱甘肽蛋白)或负责功能变化的特定位点。磷酸化和S-
CMYBP-C的谷胱甘肽化可能具有拮抗作用。孵育CMYBP-C的三个N'-末端域
随着GSSG,S-谷胱甘肽化的CMYBP-C显着增加,CMYBP-C下调
磷酸化。这些结果表明,CMYBP-C磷酸化的减少以及随之而来的损失
在失败的心脏中看到的磷酸化CMYBP-C的心脏保护作用可能是由于增加
s-谷胱甘肽化的CMYBP-C。此外,抗缺血药物Ranolazine已被证明可以改善
舒张功能到假水平,与S-谷胱甘肽化的CMYBP-C相关。这些数据表明
当前可用的心脏疗法可能有助于调节CMYBP-C S-谷酰二酰化的水平。
这是该建议将确定磷酸化和S-谷二酰化之间的相互作用如何影响
通过我们的小说“切割和
粘贴” spyc3小鼠模型。蛋白质结构域CMYBP-C的蛋白质结构域C0C7将使用肌膜“切割”
烟草蚀刻病毒蛋白,并在洗涤步骤后,有或没有修饰的重组C0C7SC蛋白
半胱氨酸的保留将取代其在肌膜中内源性位置内的位置。站点定向
诱变将用于产生半胱氨酸的替代构建体,以防止特异
残留物和每个构建体的功能效应将使用“切割和糊状”模型测量。双重的
在有或没有雷诺嗪治疗的情况下,在PKA和GSSG中孵育将决定这一点的功能效应
相互作用。 ProQ钻石染色,免疫印迹,PHOS-TAG凝胶和质谱法的组合
将用于衡量总修改水平并确定特定地点的修改。结果
提案将是第一个确定单个CMYBP-C s-谷胱甘肽的残差和
磷酸化和s-谷胱甘肽化cmybp-c串扰。这项研究建议将导致更好
了解氧化应激对CMYBP-C功能的影响,其影响磷酸化的潜力
心脏,如果当前可用的治疗可能使受氧化应激影响的心脏受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angela Greenman其他文献
Angela Greenman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
肾上腺素能受体激动剂引起睑板腺功能障碍发病的机制研究
- 批准号:82371024
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
β2肾上腺素能受体基因多态性Arg16Gly影响慢性心衰预后及 β受体阻滞剂疗效的机制研究
- 批准号:81800356
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
β-受体拮抗剂对曲妥珠单抗的增效作用及其机制研究
- 批准号:81773258
- 批准年份:2017
- 资助金额:55.0 万元
- 项目类别:面上项目
β2肾上腺素能受体激动剂通过cAMP/PKA通路调控MSCs旁分泌在急性肺损伤修复中的作用和机制
- 批准号:81500058
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
选择性β1肾上腺素能受体阻断剂抗骨质疏松的作用及机理研究
- 批准号:81300710
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A role for cardiomyocyte pannexin 1 in non-ischemic heart failure
心肌细胞pannexin 1在非缺血性心力衰竭中的作用
- 批准号:
10680109 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Glymphatic impairment as a crucial factor in particulate matter exposure related development of Alzheimer's disease pathology
类淋巴系统损伤是与颗粒物暴露相关的阿尔茨海默病病理学发展的关键因素
- 批准号:
10718104 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Ryanodine receptor structure and function in heart failure
Ryanodine 受体结构和心力衰竭中的功能
- 批准号:
10628917 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Locus coeruleus-norepinephrine regulation of stress-induced anxiety and opioid reinstatement
蓝斑-去甲肾上腺素对应激性焦虑和阿片类药物恢复的调节
- 批准号:
10677132 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Structural Racism, Pharmacy Closures and Disparities in Medication Adherence Among Older Adult Medicare Part-D Beneficiaries
结构性种族主义、药房关闭以及老年人医疗保险 D 部分受益人的药物依从性差异
- 批准号:
10568717 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别: