Towards real-time XFEL data reduction with CCTBX
通过 CCTBX 实现实时 XFEL 数据缩减
基本信息
- 批准号:8551674
- 负责人:
- 金额:$ 35.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-26 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcquired Immunodeficiency SyndromeAddressAffectAreaBiologicalCommunitiesComputer softwareCrystallographyDataData CollectionData SetDatabasesDeath RateDevelopmentDiagnostic radiologic examinationDimensionsDiseaseDocumentationDrug TargetingEducational workshopElectronsFeedbackFundingHIVHIV Protease InhibitorsHead Start ProgramHourHuman bodyImageInvestmentsKnowledgeLaboratoriesLasersLengthLettersLibrariesLifeLightLiquid substanceMaintenanceMarketingMembrane ProteinsMethodsModelingMolecularMolecular StructureOutputPharmaceutical PreparationsPharmacologic SubstancePhysiologic pulseProcessProductivityProteinsPublicationsPublishingPulse RatesResearchResourcesRoentgen RaysRunningSamplingSavingsScheduleSeriesSolutionsSourceStructureSurveysSynchrotronsSystemTechniquesTechnologyTimeTrainingUnited States National Institutes of HealthWorkX ray diffraction analysisX-Ray CrystallographyX-Ray Diffractionattenuationbasebeamlinecomputerized data processingcostdata reductiondesigndrug developmentdrug discoveryexperienceimprovedindexinginstrumentinteroperabilitymeetingsopen sourcepathogenpreventresearch facilityresearch studystructural biologysuccessthree dimensional structuretool
项目摘要
DESCRIPTION (provided by applicant): The rapid development of HIV protease inhibitor drugs between 1989 and 1995 is an early success story of structural biology. Structural biology is concerned with three-dimensional structures of biological molecules. The structure of a molecule crucial in the infectious cycle of HIV was first published in 1989. Only six years later the first drugs targeting this molecule appeared on the market, leading to a dramatic decrease in the death rate from AIDS. In the 15 years since, drug development in general has become increasingly dependent on structural biology. Knowledge of the molecular structure of pathogens often suggests ways to disrupt their function. Compared to the traditional trial-and-error approach this can eliminate years of development time and cut many millions of dollars in development costs. - The predominant method for obtaining molecular structures is X-ray crystallography, which accounts for 87% of all biological structures known today. Long-term large-scale investments by NIH into research facilities of industrial dimensions have increased the number of structures solved per year to nearly 10,000. Unfortunately, certain highly important molecules are difficult to solve with current X-ray techniques. These are the membrane proteins, which are the targets of more than 60% of the drugs on the market. There is an estimated 5,500-7,700 membrane proteins in the human body, but fewer than a dozen structures of these are currently known. This is mainly because membrane proteins are notoriously difficult to crystallize. Without crystals of sufficient size conventional X-ray crystallography is impossible. - Very recently, a new major X-ray technology has emerged that promises to expand the reach to membrane proteins. The construction of the world's first hard X-ray Free Electron Laser (XFEL) was completed in 2009. The first publication of exploratory XFEL work on a membrane protein appeared in February 2011. An XFEL instrument can work with crystals of much smaller sizes than are needed for conventional experiments, sizes attainable even with membrane proteins. However, extracting structural information from an XFEL experiment currently takes many months. In about 28% of all cases, XFEL data processing is faced with ambiguities that prevent the extraction of high-quality results, compromising biological interpretation. For XFEL experiments to realize their full potential, the data processing times need to be decreased by at least two orders of magnitude and the ambiguities need to be resolved. - We have extensive experience developing data processing software for conventional X-ray experiments, with open-source implementations in the Computational Crystallography Toolbox (CCTBX). Building on our internationally recognized expertise and the large set of modular tools in CCTBX, we will implement real-time processing of XFEL data. This will include resolving ambiguities in the data if present, so that high-quality structural information will be within reach for all types of pharmaceutically relevant molecules.
描述(申请人提供):1989年至1995年间HIV蛋白酶抑制剂药物的快速发展是结构生物学的早期成功故事。结构生物学关注生物分子的三维结构。在 HIV 感染周期中至关重要的一种分子的结构于 1989 年首次发表。仅六年后,第一种针对该分子的药物就出现在市场上,导致艾滋病死亡率急剧下降。此后的 15 年里,药物开发总体上越来越依赖于结构生物学。对病原体分子结构的了解通常会提出破坏其功能的方法。与传统的试错方法相比,这可以消除数年的开发时间并削减数百万美元的开发成本。 - 获得分子结构的主要方法是 X 射线晶体学,它占当今已知的所有生物结构的 87%。 NIH 对工业规模研究设施的长期大规模投资使每年解决的结构数量增加到近 10,000 个。不幸的是,某些非常重要的分子很难用当前的 X 射线技术来解析。这些就是膜蛋白,是市场上 60% 以上药物的靶标。人体内估计有 5,500-7,700 个膜蛋白,但目前已知的结构不到十几个。这主要是因为膜蛋白非常难以结晶。如果没有足够尺寸的晶体,传统的 X 射线晶体学是不可能的。 - 最近,出现了一种新的主要 X 射线技术,有望扩大膜蛋白的范围。世界上第一台硬 X 射线自由电子激光器 (XFEL) 于 2009 年建成。关于膜蛋白的探索性 XFEL 工作的第一篇出版物于 2011 年 2 月发表。XFEL 仪器可以处理比实际尺寸小得多的晶体。传统实验所需的尺寸,甚至用膜蛋白也能达到。然而,从 XFEL 实验中提取结构信息目前需要数月时间。在大约 28% 的情况下,XFEL 数据处理面临着模糊性,阻碍了高质量结果的提取,从而影响了生物学解释。为了让 XFEL 实验充分发挥其潜力,数据处理时间需要减少至少两个数量级,并且需要解决歧义。 - 我们在开发用于传统 X 射线实验的数据处理软件方面拥有丰富的经验,并在计算晶体学工具箱 (CCTBX) 中实现了开源。凭借我们国际公认的专业知识和 CCTBX 中的大量模块化工具,我们将实现 XFEL 数据的实时处理。这将包括解决数据中存在的歧义(如果存在),以便所有类型的药物相关分子都能获得高质量的结构信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NICHOLAS K SAUTER其他文献
NICHOLAS K SAUTER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NICHOLAS K SAUTER', 18)}}的其他基金
DIALS: New Computational Methods to Enable Challenging Crystallographic Experiments
DIALS:新的计算方法可实现具有挑战性的晶体学实验
- 批准号:
9234571 - 财政年份:2016
- 资助金额:
$ 35.01万 - 项目类别:
DIALS: New Computational Methods to Enable Challenging Crystallographic Experiments
DIALS:新的计算方法可实现具有挑战性的晶体学实验
- 批准号:
9008859 - 财政年份:2016
- 资助金额:
$ 35.01万 - 项目类别:
DIALS: New Computational Methods to Enable Challenging Crystallographic Experiments
DIALS:新的计算方法可实现具有挑战性的晶体学实验
- 批准号:
9242823 - 财政年份:2016
- 资助金额:
$ 35.01万 - 项目类别:
DIALS / CCTBX: Serial crystallography computational methods aimed at biomolecular function
DIALS / CCTBX:针对生物分子功能的串行晶体学计算方法
- 批准号:
9886005 - 财政年份:2016
- 资助金额:
$ 35.01万 - 项目类别:
DIALS / CCTBX: Serial crystallography computational methods aimed at biomolecular function
DIALS / CCTBX:针对生物分子功能的串行晶体学计算方法
- 批准号:
10576330 - 财政年份:2016
- 资助金额:
$ 35.01万 - 项目类别:
DIALS / CCTBX: Serial crystallography computational methods aimed at biomolecular function
DIALS / CCTBX:针对生物分子功能的串行晶体学计算方法
- 批准号:
10359776 - 财政年份:2016
- 资助金额:
$ 35.01万 - 项目类别:
Towards real-time XFEL data reduction with CCTBX
通过 CCTBX 实现实时 XFEL 数据缩减
- 批准号:
8350339 - 财政年份:2012
- 资助金额:
$ 35.01万 - 项目类别:
Towards real-time XFEL data reduction with CCTBX
通过 CCTBX 实现实时 XFEL 数据缩减
- 批准号:
8704958 - 财政年份:2012
- 资助金额:
$ 35.01万 - 项目类别:
Towards real-time XFEL data reduction with CCTBX
通过 CCTBX 实现实时 XFEL 数据缩减
- 批准号:
8897402 - 财政年份:2012
- 资助金额:
$ 35.01万 - 项目类别:
Realizing New Horizons in X-ray Crystallography Data Processing
实现 X 射线晶体学数据处理的新视野
- 批准号:
8470660 - 财政年份:2011
- 资助金额:
$ 35.01万 - 项目类别:
相似国自然基金
从CD4+、CD8+T细胞免疫活化分子及其上游调控因子表达探究健脾祛湿法治疗艾滋病免疫调节机制
- 批准号:81460716
- 批准年份:2014
- 资助金额:48.0 万元
- 项目类别:地区科学基金项目
HAART过程中HCV复制增强与肝细胞MAVS抗病毒通路的关系研究
- 批准号:81201286
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing a regionally representative risk assessment tool to identify men at highest risk of HIV acquisition in sub-Saharan Africa
开发具有区域代表性的风险评估工具,以确定撒哈拉以南非洲地区感染艾滋病毒风险最高的男性
- 批准号:
10762645 - 财政年份:2023
- 资助金额:
$ 35.01万 - 项目类别:
Adapting and testing a combination peer navigation and mHealth intervention to enhance treatment engagement and viral suppression among sexual and gender minority youth in Nigeria
调整和测试同伴导航和移动医疗干预相结合,以提高尼日利亚性少数群体青年的治疗参与度和病毒抑制能力
- 批准号:
10619071 - 财政年份:2023
- 资助金额:
$ 35.01万 - 项目类别:
Molecular Networks and Deep Learning for Targeted HIV Interventions among PWID
分子网络和深度学习对吸毒者进行针对性的艾滋病毒干预
- 批准号:
10469166 - 财政年份:2022
- 资助金额:
$ 35.01万 - 项目类别:
Evaluation of novel tuberculosis LAM assays among people living with HIV and sepsis
HIV 感染者和败血症患者中新型结核病 LAM 检测的评估
- 批准号:
10548256 - 财政年份:2022
- 资助金额:
$ 35.01万 - 项目类别: