Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
基本信息
- 批准号:8439403
- 负责人:
- 金额:$ 42.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-10 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAfferent NeuronsAnimal ModelAnimalsAntibodiesAplysiaAttentionBehaviorBioinformaticsBiologyBiomedical EngineeringBiomedical ResearchBrainCell Culture SystemCell Culture TechniquesCell PolarityCell physiologyCellsCharacteristicsCoculture TechniquesCommunicationComplementDistalDistantFMRFamideFrightFutureGene ExpressionGene Expression ProfileGene Expression RegulationGenesGenomicsGillsGoalsGrowth ConesHumanIn VitroIndividualInterneuronsInvestigationLearningMaintenanceMemoryMemory LossMental DepressionMessenger RNAMethodologyMicroRNAsMicrodissectionModalityModelingMolecularMotor NeuronsNerveNeuritesNeurodegenerative DisordersNeuronal PlasticityNeuronsNeurosciencesPathway interactionsPatternPeripheralPhysiologicalPolyadenylationPresynaptic TerminalsProcessPropertyProteinsRNARNA InterferenceReflex actionRegulator GenesResearchResolutionRoleSensorySerotoninSignal TransductionSiteSmall RNASynapsesSystemSystems AnalysisSystems BiologyTechnologyTestingTimeTranscriptTranslationsUrsidae FamilyWithdrawalbasecell typecostexpectationexperiencefunctional genomicsinterestlaser tweezerlong term memorymembernervous system disorderneural circuitneuronal cell bodyneuronal growthpolarized cellprotein distributionreconstitutionresponsesuccesssynaptic functiontranscriptomics
项目摘要
DESCRIPTION (provided by applicant): The objective of the proposed research is to conduct a thorough single-cell and cell-compartment gene expression study through the application of high throughput genomic technologies to identify the genomic bases of neuronal identity, polarity and plasticity. Utilizing the well-studied gill withdrawal reflex memory circuit from the model organism Aplysia californica, our goal is to define systematically the molecular repertoire (genomic blueprint) of the neurites and individual synapses of the key neurons that make up this cellular ensemble. We will define the compartmental transcriptomes (the sets of mRNAs, miRNAs and other ncRNAs) within the components of the functional circuit (cells and synapses), which are reconstituted in vitro by co- culture of 2-4 of its best characterized cells (L7 motor neuron, sensory neuron, stimulatory and inhibitory interneurons). This fully operational neural circuit reconstructed in cell culture bears many important properties of the intact circuit, and has been used with great success to ascertain the molecular underpinnings of memory formation in Aplysia, numerous aspects of which are conserved within the animal kingdom, including in the human brain. The systems biology approach will be applied to reveal gene regulatory networks and their potential role in the establishment and maintenance of long-term memory using learned fear as an experimental paradigm, focusing on synaptic mechanisms of long-term facilitation (LTF) and depression (LTD). We will use this genomic and systems biology approach to explore the following three fundamental brain mechanisms: (1) the molecular basis of neuronal identity, by revealing those transcripts that are unique to or shared among these neurons or specialized synapses; (2) the molecular signals controlling cellular polarity and the formation of the precise pattern of interconnections which underlie behavior, in part directed by the distribution of mRNAs in the central and peripheral compartments of these cells; and (3) the molecular basis of synapse-specific neuronal plasticity and neuronal growth, with special attention paid to the mRNA repertoire within the individual synapses at the junctions between pairs of pre- and post-synaptic neurons. The combined approach will take advantage of an already established team of experts in genomics, bioengineering, neuroscience, and bioinformatics. Though these paradigms will be established in the large well-characterized neurons of Aplysia, the mechanisms revealed and the technologies developed will have a broad impact in the biology of any polarized cell type with asymmetric distribution of RNAs and proteins.
PUBLIC HEALTH RELEVANCE: Using Aplysia, a model organism that has proved exemplary in the study of learned behaviors and memory formation, we will be able for the first time to study how genes are expressed in individual cell sub- compartments. The multi-component system analyses to be undertaken will be used to understand how neurons and synapses operate in the context of learning and memory and how the activities of thousands of genes are distributed and integrated within a single cell. The molecular and systems-level discoveries made will have a broad impact in biology and biomedical research, including but not limited to memory loss and neurodegenerative diseases.
描述(由申请人提供):拟议研究的目的是通过应用高通量基因组技术来进行彻底的单细胞和细胞区室基因表达研究,以确定神经元身份、极性和可塑性的基因组基础。利用来自模型生物海兔的经过充分研究的鳃缩回反射记忆回路,我们的目标是系统地定义构成该细胞群的关键神经元的神经突和单个突触的分子库(基因组蓝图)。我们将在功能回路(细胞和突触)的组成部分中定义区室转录组(mRNA、miRNA 和其他 ncRNA 的集合),这些转录组通过共培养 2-4 个其最佳特征的细胞(L7)在体外重建。运动神经元、感觉神经元、刺激性和抑制性中间神经元)。这种在细胞培养中重建的完全运作的神经回路具有完整回路的许多重要特性,并已被成功地用于确定海兔记忆形成的分子基础,其中许多方面在动物界中是保守的,包括在动物界中。人类的大脑。系统生物学方法将用于揭示基因调控网络及其在建立和维持长期记忆中的潜在作用,使用习得性恐惧作为实验范式,重点关注长期促进(LTF)和抑郁(LTD)的突触机制)。我们将使用这种基因组和系统生物学方法来探索以下三种基本的大脑机制:(1)神经元身份的分子基础,通过揭示这些神经元或专门突触所独有或共享的转录本; (2) 控制细胞极性的分子信号和构成行为基础的精确互连模式的形成,部分是由这些细胞的中央和外周区室中 mRNA 的分布所指导的; (3) 突触特异性神经元可塑性和神经元生长的分子基础,特别关注突触前和突触后神经元对之间连接处的单个突触内的 mRNA 库。这种组合方法将利用基因组学、生物工程、神经科学和生物信息学领域已经建立的专家团队。尽管这些范式将在海兔的大型特征明确的神经元中建立,但所揭示的机制和开发的技术将对任何具有 RNA 和蛋白质不对称分布的极化细胞类型的生物学产生广泛的影响。
公共健康相关性:利用海兔(一种在学习行为和记忆形成研究中已被证明具有典范作用的模式生物),我们将首次能够研究基因在单个细胞亚区室中的表达方式。即将进行的多组件系统分析将用于了解神经元和突触在学习和记忆背景下如何运作,以及数千个基因的活动如何在单个细胞内分布和整合。分子和系统层面的发现将对生物学和生物医学研究产生广泛影响,包括但不限于记忆丧失和神经退行性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JINGYUE JU其他文献
JINGYUE JU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JINGYUE JU', 18)}}的其他基金
Discovery and Optimization of Inhibitors of SARS-CoV-2 Polymerase and Exonuclease
SARS-CoV-2聚合酶和核酸外切酶抑制剂的发现和优化
- 批准号:
10513924 - 财政年份:2022
- 资助金额:
$ 42.73万 - 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
- 批准号:
8703796 - 财政年份:2012
- 资助金额:
$ 42.73万 - 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
- 批准号:
8542899 - 财政年份:2012
- 资助金额:
$ 42.73万 - 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
- 批准号:
8895802 - 财政年份:2012
- 资助金额:
$ 42.73万 - 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
- 批准号:
9128063 - 财政年份:2012
- 资助金额:
$ 42.73万 - 项目类别:
Single Molecule DNA Sequencing by Fluorescent Nucleotide Reversible Terminators
通过荧光核苷酸可逆终止子进行单分子 DNA 测序
- 批准号:
8091384 - 财政年份:2009
- 资助金额:
$ 42.73万 - 项目类别:
Single Molecule DNA Sequencing by Fluorescent Nucleotide Reversible Terminators
通过荧光核苷酸可逆终止子进行单分子 DNA 测序
- 批准号:
7714932 - 财政年份:2009
- 资助金额:
$ 42.73万 - 项目类别:
An Integrated System for DNA Sequencing by Synthesis
DNA 合成测序集成系统
- 批准号:
7923565 - 财政年份:2009
- 资助金额:
$ 42.73万 - 项目类别:
Single Molecule DNA Sequencing by Fluorescent Nucleotide Reversible Terminators
通过荧光核苷酸可逆终止子进行单分子 DNA 测序
- 批准号:
7923389 - 财政年份:2009
- 资助金额:
$ 42.73万 - 项目类别:
Molecular Engineering Approach to Study Long Term Synaptic Plasticity
研究长期突触可塑性的分子工程方法
- 批准号:
7561660 - 财政年份:2008
- 资助金额:
$ 42.73万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Intra-Articular Drug Delivery Modulating Immune Cells in Inflammatory Joint Disease
关节内药物递送调节炎症性关节疾病中的免疫细胞
- 批准号:
10856753 - 财政年份:2023
- 资助金额:
$ 42.73万 - 项目类别:
Neural Inflammation and Exercise Pressor Reflex in Heart Failure
心力衰竭中的神经炎症和运动升压反射
- 批准号:
10712202 - 财政年份:2023
- 资助金额:
$ 42.73万 - 项目类别:
MECHANISMS OF VISCERAL PAIN DRIVEN BY SMALL INTESTINAL MICROBIOTA
小肠微生物驱动内脏疼痛的机制
- 批准号:
10836298 - 财政年份:2023
- 资助金额:
$ 42.73万 - 项目类别:
Resolvin receptor signaling in trigeminal sensory neurons
三叉神经感觉神经元中的 Resolvin 受体信号传导
- 批准号:
10738862 - 财政年份:2023
- 资助金额:
$ 42.73万 - 项目类别: