Molecular Engineering Approach to Study Long Term Synaptic Plasticity
研究长期突触可塑性的分子工程方法
基本信息
- 批准号:7561660
- 负责人:
- 金额:$ 56.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-02-01 至 2012-01-31
- 项目状态:已结题
- 来源:
- 关键词:Afferent NeuronsAnimal ModelAplysiaAxonBioinformaticsBiologicalBiologyBiomedical EngineeringBiomedical ResearchBrainCell Culture TechniquesCellsChemistryColorDNA SequenceDistantEngineeringEukaryotic CellEventExperimental ModelsFoundationsFunctional ImagingGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGenomicsGoalsGrowthImageIn Situ HybridizationLeadLearningLifeLongitudinal StudiesMemoryMessenger RNAModificationMolecularMolecular ProbesMonitorMotor NeuronsNeuritesNeurobiologyNeuronal PlasticityNeuronsNeurosciencesPatternPhasePhenotypePhysiologicalPopulationPresynaptic TerminalsProcessRNARegulator GenesResearchResearch PersonnelResolutionRoleSchemeSensorySerotoninSignal TransductionStagingSynapsesSynaptic TransmissionSynaptic plasticitySystemTechnologyTestingTimeTranscriptVariantbasecostdesigndigitalfunctional genomicsgene functioninnovationnervous system disorderneuronal growthnew technologynovelresearch and developmentsingle cell analysissynaptogenesistooltranscriptomics
项目摘要
DESCRIPTION (provided by investigator): The objectives of the proposed research are the development of new molecular engineering technologies for large-scale gene expression analysis from single neurons, and applications of these technologies to identify and characterize genes that are involved in long-term synaptic plasticity and growth. We will combine research expertise in Chemistry, Engineering and Biology to pursue the research and development of the following new molecular engineering approaches: (i) Massive Parallel DNA Sequencing Chip System for digital gene expression analysis from single cells and cell compartments; and (ii) Novel Molecular Probes for Real-time monitoring of multiple mRNA species in living neurons and defined cellular microdomains. Each of these technologies will be rigorously tested and validated using the simpler memory-forming network of Aplysia, a unique model organism for neurobiology. As a "proof-of concept", we will focus on using these approaches for the identification of gene-regulatory networks underlying the learning-induced synaptic growth. Specifically, we will characterize a molecular cascade of events induced by serotonin, leading to the formation of new synapses and a long-term enhancement of synaptic strength also known as cellular manifestations of learning and memory mechanisms. The long-term goal of this project is to implement these new technologies to explore two fundamental brain mechanisms: (1) the molecular basis of neuronal growth; (2) the molecular signals controlling synapse-specific neuronal plasticity. Using the sensory neurons of the neuronal networks in Aplysia as an experimental model, we will study the role of asymmetric mRNA distribution in integrative functions and phenotypes of eukaryotic cells. We will use a hierarchical design to achieve structural resolution of single-cell profiling in a descending fashion, where a parallel genomic and functional analysis will be performed according to the following scheme: single neuron->single axon->single synapse. The gene expression profiling will be validated using a set of complementary approaches, correlated with functional imaging of selected mRNAs at functionally characterized neurons and synaptic terminals during various stages of 5-HT induced synaptic growth. The combined approach based on Chemistry, Engineering, and Neuroscience will be used to understand how neurons and synapses operate in the context of learning and memory. The technologies developed and the biological discoveries made in the project will have a broad impact in deciphering the molecular mechanisms of neurological disorders.
描述(研究人员提供):拟议研究的目标是开发单个神经元的大规模基因表达分析的新分子工程技术,以及这些技术的应用,以识别和表征与长期突触的基因可塑性和生长。 我们将结合化学,工程和生物学方面的研究专业知识,以追求以下新分子工程方法的研究和开发:(i)单个细胞和细胞室的大量平行DNA测序系统用于数字基因表达分析; (ii)新的分子探针,用于实时监测活神经元中多种mRNA物种和定义的细胞微域。 这些技术中的每一个都将通过Aplysia的简单记忆形成网络进行严格测试和验证,Aplysia是一种独特的神经生物学模型生物体。 作为“概念验证”,我们将专注于使用这些方法来识别学习引起的突触增长的基因调节网络。 具体而言,我们将表征由5-羟色胺诱导的事件的分子级联,导致形成新的突触,并长期增强突触强度,也称为学习和记忆机制的细胞表现。 该项目的长期目标是实施这些新技术来探索两种基本的大脑机制:(1)神经元生长的分子基础; (2)控制突触特异性神经元可塑性的分子信号。 我们将使用Aplysia中神经元网络的感觉神经元作为实验模型,我们将研究不对称mRNA分布在整合功能和真核细胞表型中的作用。 我们将使用层次设计以降序的方式实现单细胞分析的结构分辨率,在此过程中,将根据以下方案进行平行的基因组和功能分析:单神经元 - >单轴 - >单轴突 - >单个突触。 将使用一组互补方法对基因表达分析进行验证,与在5-HT诱导的突触生长的各个阶段的功能表征神经元和突触末端的选定mRNA的功能成像相关。 基于化学,工程和神经科学的组合方法将用于了解神经元和突触如何在学习和记忆的背景下运作。 开发的技术和项目中的生物学发现将对破译神经系统疾病的分子机制产生广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JINGYUE JU其他文献
JINGYUE JU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JINGYUE JU', 18)}}的其他基金
Discovery and Optimization of Inhibitors of SARS-CoV-2 Polymerase and Exonuclease
SARS-CoV-2聚合酶和核酸外切酶抑制剂的发现和优化
- 批准号:
10513924 - 财政年份:2022
- 资助金额:
$ 56.46万 - 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
- 批准号:
8703796 - 财政年份:2012
- 资助金额:
$ 56.46万 - 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
- 批准号:
8542899 - 财政年份:2012
- 资助金额:
$ 56.46万 - 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
- 批准号:
8895802 - 财政年份:2012
- 资助金额:
$ 56.46万 - 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
- 批准号:
8439403 - 财政年份:2012
- 资助金额:
$ 56.46万 - 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
- 批准号:
9128063 - 财政年份:2012
- 资助金额:
$ 56.46万 - 项目类别:
Single Molecule DNA Sequencing by Fluorescent Nucleotide Reversible Terminators
通过荧光核苷酸可逆终止子进行单分子 DNA 测序
- 批准号:
8091384 - 财政年份:2009
- 资助金额:
$ 56.46万 - 项目类别:
Single Molecule DNA Sequencing by Fluorescent Nucleotide Reversible Terminators
通过荧光核苷酸可逆终止子进行单分子 DNA 测序
- 批准号:
7714932 - 财政年份:2009
- 资助金额:
$ 56.46万 - 项目类别:
An Integrated System for DNA Sequencing by Synthesis
DNA 合成测序集成系统
- 批准号:
7923565 - 财政年份:2009
- 资助金额:
$ 56.46万 - 项目类别:
Single Molecule DNA Sequencing by Fluorescent Nucleotide Reversible Terminators
通过荧光核苷酸可逆终止子进行单分子 DNA 测序
- 批准号:
7923389 - 财政年份:2009
- 资助金额:
$ 56.46万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Assessing effects of manipulation of expression of kinesins in a mouse modelof Alzheimer's disease
评估阿尔茨海默病小鼠模型中驱动蛋白表达的操纵效果
- 批准号:
10447995 - 财政年份:2022
- 资助金额:
$ 56.46万 - 项目类别:
Processing of TGFbeta as a mechanism for precise temporal orchestration in long term memory formation
TGFbeta 的处理作为长期记忆形成中精确时间编排的机制
- 批准号:
10490826 - 财政年份:2021
- 资助金额:
$ 56.46万 - 项目类别:
Characterization of the adaptive balance between defensive and appetitive behaviors induced by aversive experience
厌恶体验引起的防御行为和食欲行为之间的适应性平衡的表征
- 批准号:
10046921 - 财政年份:2020
- 资助金额:
$ 56.46万 - 项目类别:
Transcriptomic Mechanisms of Formation and Persistence of Synapse Specific Long-Term Memory
突触特异性长期记忆形成和持续的转录组机制
- 批准号:
9896348 - 财政年份:2019
- 资助金额:
$ 56.46万 - 项目类别:
Transcriptomic Mechanisms of Formation and Persistence of Synapse Specific Long-Term Memory
突触特异性长期记忆形成和持续的转录组机制
- 批准号:
10456810 - 财政年份:2019
- 资助金额:
$ 56.46万 - 项目类别: