Genomic Bases of Behavioral Learning: Single Cell Approaches
行为学习的基因组基础:单细胞方法
基本信息
- 批准号:8460174
- 负责人:
- 金额:$ 39.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAfferent NeuronsAlzheimer&aposs DiseaseAplysiaAttentionBehaviorBehavioralBiological ModelsBrainCell CommunicationCellsChIP-seqCyclic AMPCyclic GMPDevelopmentDiseaseDrug AddictionEnhancersEventFunctional disorderGene ExpressionGene Expression RegulationGenesGenomeGenomicsHeartIn VitroIndividualInterneuronsLearningLifeLinkLogicMapsMemoryMemory LossMolecularMolecular TargetMonitorMotor NeuronsNeuronsNeurosciencesOutputPathway interactionsPhenotypePhysiologicalPreparationReflex actionRegulator GenesRegulatory PathwayResolutionRoleSchizophreniaSecond Messenger SystemsSerotoninSignal PathwaySignal TransductionSignaling MoleculeSynapsesSynaptic plasticityTechnologyTestingTimeTranscriptional RegulationWithdrawalage relatedbasechromatin remodelingclassical conditioningconditioningexperiencegenome-widehuman diseasein vivomemory processmolecular siteneural circuitneurodevelopmentoperationpromoterrelating to nervous systemsecond messengertranscription factortranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): Experience-dependent synaptic plasticity and underlying gene regulation are crucial for normal brain development and learning, and are disrupted in a broad array of disorders of development and learning such as schizophrenia, Alzheimer's disease, drug addiction and age related memory loss. To date, most studies of the cellular and molecular mechanisms of synaptic plasticity and gene regulation have taken a highly reductionist approach in very simplified preparations in vitro. However, practically nothing is known about genomic mechanisms of memory that occur during actual behavioral learning in the intact brain. In particular, the reductionist approach makes it difficult or impossible to study the integration of different inputs and pathways that is critical for many aspects of learning, and is a hallmark of neurodevelopment and associative learning. For these reasons, our long-term objectives are to characterize genome-wide mechanisms of long-term plasticity at the level of single identified neurons during behavioral learning. For this challenging task we will use the well-defined model system of the Aplysia withdrawal reflex, with a nearly complete mapping of a simple memory-forming circuit in a simplified behavioral preparation. We will record the activity of key individually identified neurons in that circuit and the synaptic connections between them during both a nonassociative form of learning (sensitization) and an associative form of learning (classical conditioning). And, for the first time, we will monitor the operation of the entire genome within specific individual neurons as they learn and remember. As a result, we will link neural activity to gene expression, plasticity, and behavior. We will also identify neuron type specific cellular signaling mechanisms and gene regulatory pathways during sensitization and conditioning, and test their roles in long-term plasticity. Based on our previous results, we hypothesize that three signaling pathways (5-HT, NO, and activity) act synergistically to produce more specific and longer-lasting memory traces during conditioning than during sensitization. Furthermore, 5-HT and NO can each change expression at least a thousand genes (some of which overlap) and induce large-scale chromatin remodeling. These findings have raised a fundamental question: how are these different inputs integrated at the level of genome-wide gene regulation in individual neurons in the circuit for conditioning? We will identify critical molecular targets (including promoters, enhancers and relevant transcription factors) leading to such integration, and examine their roles as decision points in the formation of long-lasting memories. These studies will significantly advance our understanding of synaptic and genomic mechanisms that contribute to circuit formation, learning, and memory, and their possible dysfunction in diseases that affect neurodevelopment and memory.
描述(由申请人提供):依赖于经验的突触可塑性和潜在的基因调控对于正常的大脑发育和学习至关重要,并且在一系列发育和学习障碍中受到破坏,例如精神分裂症、阿尔茨海默病、药物成瘾和年龄相关疾病记忆丧失。迄今为止,大多数关于突触可塑性和基因调控的细胞和分子机制的研究都在非常简化的体外制备中采用了高度简化的方法。然而,对于完整大脑中实际行为学习过程中发生的记忆基因组机制几乎一无所知。特别是,还原论方法使得研究不同输入和路径的整合变得困难或不可能,而这对于学习的许多方面至关重要,并且是神经发育和联想学习的标志。 由于这些原因,我们的长期目标是在行为学习过程中在单个已识别的神经元水平上表征长期可塑性的全基因组机制。对于这项具有挑战性的任务,我们将使用定义明确的海兔撤回反射模型系统,在简化的行为准备中几乎完整地映射简单的记忆形成回路。我们将记录该回路中关键的单独识别神经元的活动以及它们在非联想形式的学习(敏化)和联想形式的学习(经典条件反射)期间的突触连接。而且,我们将首次监测特定个体神经元在学习和记忆过程中整个基因组的运作。因此,我们将神经活动与基因表达、可塑性和行为联系起来。我们还将确定敏化和调节过程中神经元类型特异性细胞信号传导机制和基因调控途径,并测试它们在长期可塑性中的作用。 根据我们之前的结果,我们假设三种信号通路(5-HT、NO 和活性)协同作用,在调节过程中比在敏化过程中产生更具体、更持久的记忆痕迹。此外,5-HT 和 NO 各自可以改变至少一千个基因的表达(其中一些重叠)并诱导大规模染色质重塑。这些发现提出了一个基本问题:这些不同的输入如何在全基因组基因调控水平上整合到调节回路中的单个神经元中?我们将确定导致这种整合的关键分子靶标(包括启动子、增强子和相关转录因子),并检查它们在长期记忆形成中作为决策点的作用。这些研究将显着增进我们对突触和基因组机制的理解,这些机制有助于回路形成、学习和记忆,以及它们在影响神经发育和记忆的疾病中可能出现的功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT D HAWKINS其他文献
ROBERT D HAWKINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT D HAWKINS', 18)}}的其他基金
Neurotrophins and consolidation of learning-related synaptic plasticity
神经营养素和学习相关突触可塑性的巩固
- 批准号:
10240484 - 财政年份:2020
- 资助金额:
$ 39.54万 - 项目类别:
Neurotrophins and consolidation of learning-related synaptic plasticity
神经营养素和学习相关突触可塑性的巩固
- 批准号:
10663312 - 财政年份:2020
- 资助金额:
$ 39.54万 - 项目类别:
Neurotrophins and consolidation of learning-related synaptic plasticity
神经营养素和学习相关突触可塑性的巩固
- 批准号:
10452648 - 财政年份:2020
- 资助金额:
$ 39.54万 - 项目类别:
Neurotrophins, spontaneous release, and synaptic growth cascades
神经营养素、自发释放和突触生长级联
- 批准号:
8558263 - 财政年份:2013
- 资助金额:
$ 39.54万 - 项目类别:
Neurotrophins, spontaneous release, and synaptic growth cascades
神经营养素、自发释放和突触生长级联
- 批准号:
9096241 - 财政年份:2013
- 资助金额:
$ 39.54万 - 项目类别:
Neurotrophins, spontaneous release, and synaptic growth cascades
神经营养素、自发释放和突触生长级联
- 批准号:
8875789 - 财政年份:2013
- 资助金额:
$ 39.54万 - 项目类别:
Neurotrophins, spontaneous release, and synaptic growth cascades
神经营养素、自发释放和突触生长级联
- 批准号:
8656824 - 财政年份:2013
- 资助金额:
$ 39.54万 - 项目类别:
Genomic Bases of Behavioral Learning: Single Cell Approaches
行为学习的基因组基础:单细胞方法
- 批准号:
8290561 - 财政年份:2011
- 资助金额:
$ 39.54万 - 项目类别:
Genomic Bases of Behavioral Learning: Single Cell Approaches
行为学习的基因组基础:单细胞方法
- 批准号:
8086817 - 财政年份:2011
- 资助金额:
$ 39.54万 - 项目类别:
Aggregation of presynaptic proteins during LTP
LTP 期间突触前蛋白的聚集
- 批准号:
6989047 - 财政年份:2002
- 资助金额:
$ 39.54万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Hippocampal adult-born neurons in social memory circuits
社会记忆回路中的海马成年神经元
- 批准号:
10716706 - 财政年份:2023
- 资助金额:
$ 39.54万 - 项目类别:
Microbiome Contributions to Age-Associated Cognitive Decline
微生物组对年龄相关认知能力下降的影响
- 批准号:
10605551 - 财政年份:2023
- 资助金额:
$ 39.54万 - 项目类别:
TBI leads to degeneration of afferent neuronal projections
TBI 导致传入神经元投射退化
- 批准号:
10660379 - 财政年份:2023
- 资助金额:
$ 39.54万 - 项目类别: