Neurotrophins and consolidation of learning-related synaptic plasticity

神经营养素和学习相关突触可塑性的巩固

基本信息

项目摘要

BDNF and other neurotrophins (NTs) have widespread and powerful roles in the mammalian nervous system, and are thought to be involved in synaptic plasticity, learning, and memory, as well as in a number of psychiatric and neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Rett syndrome, drug addiction, schizophrenia, and depression. However, how NTs function at the cellular and synaptic levels is not well understood. For example, it is not clear whether NTs are released from or act on the pre- or postsynaptic neuron, or whether and how multiple mammalian NTs interact at a single synapse. Aplysia sensory-motor neuron cell culture is an ideal system for addressing these types of questions. We had previously identified an Aplysia BDNF ortholog (ApNT) and its Trk receptor (ApTrk) and found that they are important for the induction of long-term facilitation (LTF) and consolidation of short-term (ST) to early intermediate-term (IT) facilitation. Our results do not support the simple linear cascade that we and others had expected, but rather reveal that ApNT plays surprising roles in two synaptic feedback loops: [1] as an autocrine signal in a presynaptic positive feedback loop that amplifies the molecules required, and [2] as both an anterograde and retrograde signal in a transynaptic feedback loop that coordinates mechanisms in the presynaptic and postsynaptic compartments. These loops provide novel mechanisms for consolidation of learning-related plasticity that could well contribute more generally. We now propose to extend those studies in three new directions: 1. The roles of ApNT and ApTrk in consolidation of long-term plasticity. We will investigate the roles of ApNT and ApTrk in consolidation of early IT to late IT and LT plasticity. We will also explore possible functions of the feedback loops, and investigate the roles of ApNT and ApTrk in gene regulation and the assembly of pre- and postsynaptic components in a synaptic growth cascade. 2. The roles of pro and mature isoforms of ApNT. Like other neurotrophins ApNT has pro and mature forms whose relative functions are unclear. Investigating the roles of those isoforms of a NT is much easier in the Aplysia system, which only has a single neurotrophin. Our preliminary results suggest the hypothesis that release of the mature form from sensory neurons may act as an autocrine signal that contributes to induction of facilitation, whereas release of the pro form from motor neurons may act as a retrograde signal that contributes to stabilization, perhaps by interacting with CPEB or PKM. We will test that hypothesis in several ways. 3. The causal roles of ApNT and ApTrk and their integration with other mechanisms during behavioral learning. The exact roles of neurotrophins in behavioral learning and memory are also unclear. To address that question, we have been studying mechanisms of simple forms of learning under physiological conditions in a reduced preparation of the Aplysia siphon withdrawal reflex. We will now use that preparation to explore the causal roles of ApNT and ApTrk and their integration with other cellular and molecular mechanisms during behavioral learning.
BDNF 和其他神经营养素 (NT) 在哺乳动物神经系统中具有广泛而强大的作用, 并被认为与突触可塑性、学习和记忆以及许多精神疾病有关 和神经系统疾病,包括阿尔茨海默病、帕金森病、亨廷顿病、雷特病 然而,NTs 如何在细胞和细胞中发挥作用。 例如,尚不清楚 NT 是从突触水平释放还是作用于突触水平。 突触前或突触后神经元,或者多个哺乳动物 NT 是否以及如何在单个突触处相互作用。 感觉运动神经元细胞培养是解决这些类型问题的理想系统。 鉴定了海兔 BDNF 直系同源物 (ApNT) 及其 Trk 受体 (ApTrk),并发现它们对于 长期促进(LTF)的诱导和短期(ST)到早期中期(IT)的巩固 我们的结果并不支持我们和其他人所期望的简单线性级联,而是支持。 揭示 ApNT 在两个突触反馈环路中发挥令人惊讶的作用:[1] 作为突触前的自分泌信号 放大所需分子的正反馈回路,并且 [2] 作为顺行和逆行 跨突触反馈环路中的信号协调突触前和突触后的机制 这些循环提供了巩固学习相关可塑性的新机制。 我们现在建议将这些研究扩展到三个新方向: 1. ApNT 和 ApTrk 在巩固长期可塑性中的作用 我们将研究 ApNT 的作用。 和 ApTrk 在早期 IT 到晚期 IT 和 LT 可塑性中我们还将探讨其可能的功能。 反馈环路,并研究 ApNT 和 ApTrk 在基因调控以及前体和前体组装中的作用 突触生长级联中的突触后成分。 2. ApNT 的原亚型和成熟亚型的作用 与其他神经营养素一样,ApNT 也有原亚型和成熟亚型。 研究 NT 亚型的相对功能要容易得多。 海兔系统仅含有一种神经营养蛋白,我们的初步结果表明以下假设: 从感觉神经元释放成熟形式可能充当自分泌信号,有助于诱导 促进,而运动神经元释放原形式可能作为逆行信号,有助于 或许通过与 CPEB 或 PKM 相互作用来实现稳定。我们将通过多种方式检验该假设。 3. ApNT和ApTrk的因果作用及其在行为学习过程中与其他机制的整合。 神经营养素在行为学习和记忆中的确切作用也不清楚。 我们一直在研究生理条件下简单学习形式的机制 海兔虹吸撤退反射的准备工作现在我们将使用该准备工作来探索虹吸反射的因果作用。 ApNT 和 ApTrk 及其在行为学习过程中与其他细胞和分子机制的整合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROBERT D HAWKINS其他文献

ROBERT D HAWKINS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROBERT D HAWKINS', 18)}}的其他基金

Neurotrophins and consolidation of learning-related synaptic plasticity
神经营养素和学习相关突触可塑性的巩固
  • 批准号:
    10240484
  • 财政年份:
    2020
  • 资助金额:
    $ 36.92万
  • 项目类别:
Neurotrophins and consolidation of learning-related synaptic plasticity
神经营养素和学习相关突触可塑性的巩固
  • 批准号:
    10663312
  • 财政年份:
    2020
  • 资助金额:
    $ 36.92万
  • 项目类别:
Neurotrophins, spontaneous release, and synaptic growth cascades
神经营养素、自发释放和突触生长级联
  • 批准号:
    8558263
  • 财政年份:
    2013
  • 资助金额:
    $ 36.92万
  • 项目类别:
Neurotrophins, spontaneous release, and synaptic growth cascades
神经营养素、自发释放和突触生长级联
  • 批准号:
    9096241
  • 财政年份:
    2013
  • 资助金额:
    $ 36.92万
  • 项目类别:
Neurotrophins, spontaneous release, and synaptic growth cascades
神经营养素、自发释放和突触生长级联
  • 批准号:
    8875789
  • 财政年份:
    2013
  • 资助金额:
    $ 36.92万
  • 项目类别:
Neurotrophins, spontaneous release, and synaptic growth cascades
神经营养素、自发释放和突触生长级联
  • 批准号:
    8656824
  • 财政年份:
    2013
  • 资助金额:
    $ 36.92万
  • 项目类别:
Genomic Bases of Behavioral Learning: Single Cell Approaches
行为学习的基因组基础:单细胞方法
  • 批准号:
    8290561
  • 财政年份:
    2011
  • 资助金额:
    $ 36.92万
  • 项目类别:
Genomic Bases of Behavioral Learning: Single Cell Approaches
行为学习的基因组基础:单细胞方法
  • 批准号:
    8460174
  • 财政年份:
    2011
  • 资助金额:
    $ 36.92万
  • 项目类别:
Genomic Bases of Behavioral Learning: Single Cell Approaches
行为学习的基因组基础:单细胞方法
  • 批准号:
    8086817
  • 财政年份:
    2011
  • 资助金额:
    $ 36.92万
  • 项目类别:
Aggregation of presynaptic proteins during LTP
LTP 期间突触前蛋白的聚集
  • 批准号:
    6989047
  • 财政年份:
    2002
  • 资助金额:
    $ 36.92万
  • 项目类别:

相似国自然基金

面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
  • 批准号:
    81973967
  • 批准年份:
    2019
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
  • 批准号:
    81801219
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
  • 批准号:
    81171040
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Molecular Dissection of the Axonal Injury Response for Regeneration and Neuroprotection
轴突损伤反应再生和神经保护的分子解剖
  • 批准号:
    10817383
  • 财政年份:
    2023
  • 资助金额:
    $ 36.92万
  • 项目类别:
Mechanism and function of retrograde mitochondrial transport in axons
轴突逆行线粒体转运的机制和功能
  • 批准号:
    10570955
  • 财政年份:
    2022
  • 资助金额:
    $ 36.92万
  • 项目类别:
Assessing effects of manipulation of expression of kinesins in a mouse modelof Alzheimer's disease
评估阿尔茨海默病小鼠模型中驱动蛋白表达的操纵效果
  • 批准号:
    10447995
  • 财政年份:
    2022
  • 资助金额:
    $ 36.92万
  • 项目类别:
Neuroplasticity in chemosensory-mediated social behaviors
化学感应介导的社会行为中的神经可塑性
  • 批准号:
    10584828
  • 财政年份:
    2022
  • 资助金额:
    $ 36.92万
  • 项目类别:
Mechanism and function of retrograde mitochondrial transport in axons
轴突逆行线粒体转运的机制和功能
  • 批准号:
    10340724
  • 财政年份:
    2022
  • 资助金额:
    $ 36.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了