Antigen-specific T-cell Activation, Application to Vaccines for Cancer and AIDS

抗原特异性T细胞激活,在癌症和艾滋病疫苗中的应用

基本信息

项目摘要

Our research focuses on elucidating new fundamental principles governing T cell activation, regulation, and effector function, and employing these to develop more effective vaccine and immunotherapy strategies for HIV and cancer. This involves several steps that together comprise a push-pull approach. First, we optimize the antigen to improve immunogenicity by epitope enhancement, changing the amino acid sequence to increase affinity for the relevant major histocompatibility (MHC) molecule. We have done this for several cancer antigens, including 2 new prostate cancer antigens, TARP and POTE, and 3/4-accrued a phase I/II TARP clinical trial in D0 prostate cancer patients with rising PSA levels. The slope of PSA rise has significantly decreased among the first 29 patients enrolled (p = 0.045 pre to 24 wks; p = 0.027 pre to 48 wks), suggesting slowing of cancer growth. The second step is to push the response with molecular adjuvants, such as cytokines and Toll-like receptor (TLR) ligands, to improve not only the quantity but also the quality of the response. We published that IL-15 is an important mediator of CD4 T cell help for CD8 T cells, being sufficient to substitute for help in animals depleted of CD4 T cells, to promote CD8 longevity and prevent TRAIL-mediated apoptosis, and also necessary for optimal help. We also previously found that IL-15 increased the avidity of the CD8 T cells, necessary for effective clearance of virus or tumor cells. We translated this to humans showing that IL-15 could substitute for CD4 help to induce a primary in vitro CD8 T cell response of naive T cells whereas IL-2 could not. IL-15 also restored alloresponsiveness of CD4 T cells from HIV-infected patients to normal levels. We also found that IL-1beta as adjuvant could enhance CD8 T cell responses and skew CD4 help to Th17. We also investigated TLR ligands as adjuvants, as these can mature DCs and induce their production of cytokines like IL-12 and IL-15. We showed synergy between pairs of TLR ligands that work through different intracellular signal transducers, MyD88 or TRIF, and determined the mechanism in DCs involving unidirectional cross-talk from TRIF to enhance MyD88-dependent cytokine production. We have now published that a triple TLR ligand combination that induces more effective protection against virus infection does not increase T cell quantity, but improves quality by inducing higher avidity T cells, and more IL-15 production. We tested the combination of triple TLR ligands, IL-15, both or neither as vaccine adjuvants in a peptide-prime, MVA-boost mucosal vaccine for SIV in macaques, challenging intrarectally with SIVmac251. As only macaques receiving both types of adjuvants showed partial protection, we investigated correlates of protection. In the adaptive immune arm, surprisingly only polyfunctional CD8 T cells specific for SIV antigens, but not total specific T cells measured by peptide-MHC tetramer binding, correlated with protection. In the innate immune arm, we found the adjuvants induced long-lived innate protection by APOBEC3G. These adjuvants also increased CD4 cell preservation in the gut, independent of viral load. Thus, molecular adjuvant vaccine strategies inducing both innate and adaptive immunity may be the most efficacious. The third step is to target the immune response to the relevant tissue, the mucosa in the case of HIV. We published a study of mucosal T cell trafficking in which we discovered a lack of equilibrium between T cells populating the intraepithelial compartment and the lamina propria in the small intestine, leading to a distinct founder effect. We also found that homing to the large intestine is governed in part by DCs from colon patches, using a mechanism independent of retinoic acid, distinct from that in the small intestine. We are identifying chemokines to selectively target T cells to the large intestine. We also developed a novel nanoparticle approach to vaccine delivery to the large intestine, using vaccine nanoparticles coated with Eudragit FS30D to allow oral delivery and release of the particles primarily in the large intestine, bypassing the stomach and site of oral tolerance in the small intestine. This could substitute for intrarectal delivery to induce protection against viral challenge via the rectal or vaginal route. We have recently adapted the oral nanoparticle approach to non-human primates in an AIDS vaccine. The fourth step is to pull the response by removing the brakes, i.e., blocking the negative regulatory mechanisms that inhibit immunity. We previously discovered a new immunoregulatory pathway involving NKT cell suppression of tumor immunity. The NKT cells make IL-13 that induces myeloid cells to make TGF-beta, which suppresses the CD8 T cell response. As NKT cells can also protect against tumors, we needed to resolve this paradox. We found that type I NKT cells (using an invariant TCRalpha chain) protected, whereas type II NKT cells (using diverse TCRs) suppressed immunity. Moreover, selective activation of type I or type II NKT cells showed they cross-regulated each other, defining a new immunoregulatory axis, analogous to the axis between Th1 and Th2 cells that has profoundly affected immunology. The balance along the NKT axis could influence subsequent adaptive immune responses. We found that type II NKT cells also suppress conventional CD4 and CD8 antigen-specific T cells. We are researching tumor lipids that stimulate NKT cells, markers to identify type II NKT cells, the mechanisms of suppression and also the relationship between suppressive NKT cells and CD25+ Foxp3+ T regulatory cells. We found that when type I NKT cells control type II, T reg cells dominate, but loss of type I NKT cells can reveal suppression by type II NKT cells. Conversely, stimulating with a type I NKT cell agonist can protect against tumors. We discovered that a beta-mannosyl analog of alpha-galactosylceramide, in contrast to other beta-linked sugar ceramides, is also protective. However, its mechanism of protection against cancer is different from that of the classic alpha-GalCer, being dependent on TNF-alpha and nitric oxide synthase rather than on interferon-gamma, and it synergizes with alpha-GalCer. It also does not induce the degree of anergy found after alpha-GalCer injection. It also stimulates human NKT cells. This first representative of a new class of NKT cell agonists should be translated to human cancer therapy. A key mediator of the NKT regulatory pathway and an important regulator of T regulatory cells is TGFbeta. We found that blockade of TGFbeta can protect against certain tumors in mice, and can synergize with anti-cancer vaccines in 2 mouse models. The protection is dependent on CD8 T cells, and in combination with a vaccine, the anti-TGFbeta increases the number of both total and high avidity CD8 T cells. We have translated this into a human clinical trial of a human anti-TGFbeta monoclonal antibody in a CRADA with Genzyme, in melanoma and renal cell cancer. The phase I study showed some activity, paradoxically mostly at lower doses (one long partial remission, 3 mixed responses and 2 cases of stable disease among 22 patients). We are obtaining regulatory approval for a phase II trial in melanoma to compare a low and high dose of antibody. Finally, we recently found that an adenovirus vaccine expressing the extracellular and transmembrane domains of HER-2 can cure large established mammary cancers and lung metastases in mice. The mechanism surprisingly involves antibodies that inhibit HER-2 function, rather than T cells. We have now made a similar cGMP recombinant adenovirus expressing the human HER-2 domains to carry out a clinical trial in human cancer patients and are submitting an IND.
我们的研究重点是阐明有关T细胞激活,调节和效应子功能的新的基本原理,并采用这些原理来开发更有效的疫苗和免疫疗法策略,以实现HIV和癌症。这涉及几个步骤,共同包含推动力方法。 首先,我们优化抗原以通过表位增强来改善免疫原性,从而改变氨基酸序列以增加对相关主要组织相容性(MHC)分子的亲和力。我们已经为几种癌症抗原做到了这一点,其中包括2种新的前列腺癌抗原,TARP和POTE,以及3/4批准的A期I/II期TARP临床试验在D0 PSA水平上升的D0前列腺癌患者中。在入学的前29名患者中,PSA上升的斜率显着下降(P = 0.045 pre te 24周; p = 0.027 pre 48 wks),表明癌症生长减慢。 第二步是用分子佐剂(例如细胞因子和Toll样受体(TLR)配体)推动反应,不仅提高了量的数量,而且可以提高反应质量。我们发表了IL-15是CD4 T细胞帮助CD8 T细胞的重要介质,足以代替耗尽CD4 T细胞的动物,以促进CD8寿命并防止跟踪介导的细胞凋亡,并且对于最佳帮助也是必要的。我们先前还发现,IL-15增加了CD8 T细胞的亲和力,这对于有效清除病毒或肿瘤细胞所必需。我们将其转换为人类,表明IL-15可以代替CD4帮助诱导天真T细胞的原发性CD8 T细胞反应,而IL-2不能。 IL-15还恢复了来自HIV感染患者的CD4 T细胞的同种异部性。我们还发现,IL-1BETA作为辅助物可以增强CD8 T细胞反应,并对Th17的CD4帮助。我们还研究了TLR配体作为佐剂,因为这些配体可以成熟,并诱导其产生IL-12和IL-15等细胞因子的产生。我们显示了通过不同细胞内信号传感器,MyD88或TRIF进行的TLR配体之间的协同作用,并确定了涉及从TRIF的单向交叉talk的DC中的机制,从而增强了MYD88依赖性细胞因子的产生。现在,我们已经发表了一种三重TLR配体组合,可诱导对病毒感染的更有效的保护并不会增加T细胞的数量,而是通过诱导更高的亲发性T细胞和更多的IL-15产生来提高质量。我们测试了三型TLR配体IL-15的组合,无论是在肽杆菌中,还是在肽中的MVA-促进粘膜疫苗中用于猕猴中的疫苗佐剂,在猕猴中进行了SIV,对SIVMAC251进行了内部挑战。由于只有接受两种类型佐剂的猕猴都显示出部分保护,因此我们研究了保护的相关性。在自适应免疫臂中,令人惊讶的是,仅对SIV抗原特异性的多功能CD8 T细胞,而不是通过肽-MHC四聚体结合测量的总特定T细胞,与保护相关。在先天的免疫臂中,我们发现佐剂引起了Apobec3g的长期先天保护。这些佐剂还增加了肠道中的CD4细胞保存,与病毒载量无关。因此,诱导先天和适应性免疫的分子辅助疫苗策略可能是最有效的。 第三步是针对对HIV的相关组织的免疫反应,即粘膜。我们发表了一项关于粘膜T细胞运输的研究,其中我们发现在小肠内填充上皮内室的T细胞与填充上皮内腔室的T细胞缺乏平衡,从而导致了独特的创始人效应。我们还发现,大肠向大肠的归宿部分由与视黄酸独立于小肠不同的视黄酸的机制来控制。我们正在鉴定趋化因子,以选择性地靶向T细胞到大肠。我们还开发了一种新型的纳米颗粒方法,使用带有Eudragit FS30D的疫苗纳米颗粒向大型肠道传递,以允许口服递送和颗粒的口服递送和释放,主要在大肠中绕过小肠中口服耐受性的胃和部位。这可以代替直肠内输送,以通过直肠或阴道途径诱导防止病毒挑战的保护。我们最近对AIDS疫苗中的非人类灵长类动物的口服纳米颗粒方法进行了调整。第四步是通过去除制动器来拉动反应,即阻止抑制免疫力的负调节机制。我们以前发现了一种新的免疫调节途径,涉及肿瘤免疫的NKT细胞抑制。 NKT细胞产生IL-13,可诱导髓样细胞产生TGF-β,从而抑制CD8 T细胞反应。由于NKT细胞也可以预防肿瘤,因此我们需要解决此悖论。我们发现,I型NKT细胞(使用不变的tcralpha链)受到保护,而II型NKT细胞(使用不同的TCR)抑制了免疫力。此外,选择性激活I型或II型NKT细胞表明它们相互调节,定义了新的免疫调节轴,类似于TH1和TH2细胞之间对免疫学产生深远影响的轴。沿NKT轴的平衡可能会影响随后的适应性免疫反应。我们发现II型NKT细胞还抑制了常规的CD4和CD8抗原特异性T细胞。我们正在研究刺激NKT细胞的肿瘤脂质,标记以鉴定II型NKT细胞,抑制机制以及抑制性NKT细胞与CD25+ FOXP3+ T调节细胞之间的关系。我们发现,当I型NKT细胞控制II型时,T Reg细胞占主导地位,但是I型NKT细胞的损失可以揭示由II型NKT细胞抑制。相反,用I型NKT细胞激动剂刺激可以预防肿瘤。我们发现,与其他β-连接的糖神经酰胺相比,α-半乳糖基酰胺的β-甘露糖基类似物也具有保护性。然而,其针对癌症的保护机制与经典的α-甲壳虫的保护机制不同,依赖于TNF-Alpha和一氧化氮合酶,而不是干扰素 - γ,并且与α-Galcer协同作用。它也不会诱导α-盖尔注射后发现的厌食程度。它还刺激人NKT细胞。这类新的NKT细胞激动剂的第一代表应转化为人类癌症治疗。 TGFBETA是NKT调节途径和T调节细胞的重要调节剂的关键介体。我们发现,TGFBETA的封锁可以预防小鼠的某些肿瘤,并且可以与2种小鼠模型中的抗癌疫苗协同作用。保护取决于CD8 T细胞,并与疫苗结合使用,抗TGFBETA增加了总自发性CD8 T细胞的数量。我们已经将其转化为人类抗TGFBETA单克隆抗体的人类临床试验,其中具有Genzyme,黑色素瘤和肾细胞癌。第一阶段的研究表明,在较低剂量的情况下,有些活性,主要是在较低的剂量下(一项长期缓解,3例混合反应和2例稳定疾病)。我们正在获得黑色素瘤II期试验的调节批准,以比较低剂量和高剂量的抗体。最后,我们最近发现,一种表达HER-2的细胞外和跨膜结构域的腺病毒疫苗可以治愈小鼠中大型已建立的乳腺癌和肺转移。该机制令人惊讶地涉及抑制HER-2功能而不是T细胞的抗体。现在,我们已经制作了类似的CGMP重组腺病毒,表达人类HER-2领域以在人类癌症患者中进行临床试验,并正在提交IND。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAY A BERZOFSKY其他文献

JAY A BERZOFSKY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAY A BERZOFSKY', 18)}}的其他基金

Vaccine and immunotherapy strategies for cancer and viruses causing cancer
针对癌症和致癌病毒的疫苗和免疫治疗策略
  • 批准号:
    10487175
  • 财政年份:
  • 资助金额:
    $ 349.78万
  • 项目类别:
Studies of the SARS-CoV-2 Spike Protein
SARS-CoV-2 刺突蛋白的研究
  • 批准号:
    10926406
  • 财政年份:
  • 资助金额:
    $ 349.78万
  • 项目类别:
Vaccine strategies for HIVAIDS
HIV/艾滋病疫苗策略
  • 批准号:
    10926475
  • 财政年份:
  • 资助金额:
    $ 349.78万
  • 项目类别:
Antigen-specific T-cell activation, application to vaccines for Cancer and AIDS
抗原特异性 T 细胞激活,在癌症和艾滋病疫苗中的应用
  • 批准号:
    6433339
  • 财政年份:
  • 资助金额:
    $ 349.78万
  • 项目类别:
Studies of the SARS-CoV-2 Spike Protein
SARS-CoV-2 刺突蛋白的研究
  • 批准号:
    10702760
  • 财政年份:
  • 资助金额:
    $ 349.78万
  • 项目类别:
Vaccine strategies for HIVAIDS
HIV/艾滋病疫苗策略
  • 批准号:
    10487152
  • 财政年份:
  • 资助金额:
    $ 349.78万
  • 项目类别:
Antigen-specific T-cell activation, application to vacci
抗原特异性T细胞激活,在疫苗中的应用
  • 批准号:
    6946729
  • 财政年份:
  • 资助金额:
    $ 349.78万
  • 项目类别:
Antigen-specific T-cell activation--cancer /AIDS vaccine
抗原特异性T细胞激活--癌症/艾滋病疫苗
  • 批准号:
    6558253
  • 财政年份:
  • 资助金额:
    $ 349.78万
  • 项目类别:
Antigen-specific T-cell activation, application to vacci
抗原特异性T细胞激活,在疫苗中的应用
  • 批准号:
    7331380
  • 财政年份:
  • 资助金额:
    $ 349.78万
  • 项目类别:
Studies of the SARS-CoV-2 Spike Protein
SARS-CoV-2 刺突蛋白的研究
  • 批准号:
    10262557
  • 财政年份:
  • 资助金额:
    $ 349.78万
  • 项目类别:

相似海外基金

In vitro and in vivo analysis of susceptibility of Ad26 vector-induced CD4 T cells to HIV/SIV
Ad26载体诱导的CD4 T细胞对HIV/SIV敏感性的体外和体内分析
  • 批准号:
    10115603
  • 财政年份:
    2020
  • 资助金额:
    $ 349.78万
  • 项目类别:
In vitro and in vivo analysis of susceptibility of Ad26 vector-induced CD4 T cells to HIV/SIV
Ad26载体诱导的CD4 T细胞对HIV/SIV敏感性的体外和体内分析
  • 批准号:
    10010193
  • 财政年份:
    2020
  • 资助金额:
    $ 349.78万
  • 项目类别:
Impact of a SARS-CoV-2 vaccine on gut integrity, immune activation and efficacy of ART
SARS-CoV-2 疫苗对肠道完整性、免疫激活和 ART 疗效的影响
  • 批准号:
    10175857
  • 财政年份:
    2018
  • 资助金额:
    $ 349.78万
  • 项目类别:
Development of a novel PCP Vaccine for AIDS patients
为艾滋病患者开发新型 PCP 疫苗
  • 批准号:
    8210723
  • 财政年份:
    2011
  • 资助金额:
    $ 349.78万
  • 项目类别:
Development of a novel PCP Vaccine for AIDS patients
为艾滋病患者开发新型 PCP 疫苗
  • 批准号:
    8306677
  • 财政年份:
    2011
  • 资助金额:
    $ 349.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了